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1 Numerical integration

1.1 Midpoint method

Please see the lecture notes.

1.2 4th order Runge-Kutta

Please see the lecture notes.

2 Statistical analysis of data

2.1 Moments of distributions

Consider a number of independent measurements of a physical quantityx. Let the
individual estimates bex0, . . . , xn−1. Then, we can define variousmomentsof the
distribution. For example:

2.1.1 The zeroeth moment

The zeroeth moment is simplyn, the number of samples.

2.1.2 The first moment—mean

The first moment is themean, and can be calculated as follows:

x̄ =
1
n

n−1∑
i=0

xi
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2.1.3 The second moment—variance

The second moment is thevariance:

var =
1

n− 1

n−1∑
i=0

(xi − x̄)2

The variance is a measure of how closely the data is clustered around the mean. The
term 1

n−1 should be replaced by1n if the value of the mean is known in advance
rather than being determined from the datax0, . . . , xn−1. This makes sense if you
think about how the value of the mean moves asn is increased.

Closely related to the variance is thestandard deviationwhich is simply

σ =
√

var

for a Gaussian distribution, 68% of the measurements will lie within±σ of the
mean; 95% will lie within±2σ of the mean; 99.7% will lie within±3σ of the
mean. However, in real physics situations we often have glitches that cause data
values to lie in statistically unlikely places.

Calculating the variance has some subtleties associated with it.Don’t be tempted
to make the following simplification:

var =
1

n− 1

n−1∑
i=0

(xi − x̄)2 =
1

n− 1

{(
n−1∑
i=0

x2
i

)
− nx̄2

}

while this leads to some computational saving (since thex̄ and
∑

x2
i can be calcu-

lated using a single pass through the data), it can lead to significant rounding errors
if the variance is much smaller than the mean. It is much better to use a two-pass
algorithm, calculatinḡx first, and then calculating the variance using the definition
given earlier. A further refinement is to use the following algorithm:

var =
1

n− 1


n−1∑
i=0

(xi − x̄)2 − 1
n

[
n−1∑
i=0

(xi − x̄)

]2


which on the face of it looks strange, since the second term is mathematically zero.
However, this term is not zero when only a limited number of digits of precision are
being used in the calculations, and, in fact, the term does a good job of correcting
for rounding errors in the first term.
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2.1.4 The third moment—skew

The third moment is theskew:

skew =
1
n

n−1∑
i=0

[
xi − x̄

σ

]3
The skew measures the degree of symmetry of the distribution around the mean. If
the distribution has a long tail above the mean, the skew is positive, else it is neg-
ative. A symmetrical distribution (such as a Gaussian) has a zero skew. Note that
since we divide byσ in calculating the skew, the resultant number is dimensionless
(unlike the mean and variance).

2.1.5 The fourth moment—kurtosis

The fourth moment is thekurtosis:

kurt = −3 +
1
n

n−1∑
i=0

[
xi − x̄

σ

]4
The kurtosis measures how “pointy/flat” the distribution is. The mysterious−3
in the definition ensures that a Gaussian has a zero kurtosis. A positive kurtosis
means that the distribution rises to a point more rapidly than a Gaussian. A negative
kurtosis means that the distribution is flatter than a Gaussian. Like skew, kurtosis
is dimensionless.

2.2 Using the moments in practice

The zeroeth through second moments are generally useful (and, in fact, are all
that is necessary to completely specify a Gaussian distribution). The higher order
moments, such as skew and kurtosis, are less likely to be meaningful, and should
be approached with caution.

2.3 Robust estimators

Real-life data often hasoutliers, i.e., points that are anomalously far (many stan-
dard deviations) from the mean. This can happen, e.g., in astronomical images
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when cosmic rays hit the CCD, thereby generating a spike of noise that is not truly
representative of the underlying distribution. It can also result from defects in the
instrumentation used to obtain the data, e.g., a high-order bit in an analog-to-digital
converter might occasionally flip on, adding 1024 (or some power of two) to the
normal data value.

Outliers can have a large effect on measures such as the variance, which are sen-
sitive to the square of the distance from the mean. The mean itself can be pulled
away from its true value. There are various techniques for coping with outliers,
some of which are detailed below.

2.3.1 Sigma-clipping

The idea of sigma-clipping is to do a first pass through the data, calculating the
mean and standard-deviation, and then do a second pass where data points that are
more than a certain number of standard deviations away from the mean are ignored.
Additional passes can be performed. The motivating idea behind sigma-clipping is
to prevent outlying points from affecting the statistical moments.

The high and low clipping thresholds need not be the same (which is useful, e.g.,
with cosmic ray spikes on a CCD image, which are always positive). Care needs
to be taken that the first estimate of the mean hasn’t been two wildly affected by
outliers to allow the subsequent passes to recover. Don’t be tempted to choose a
very low threshold (like one standard deviation) since this will remove many valid
data samples.

2.3.2 Average deviation

Theaverage deviationcan be calculated from

adev =
1
n

n−1∑
i=0

|xi − x̄|

and is less affected by outliers than the variance.

2.3.3 Median

Themedianis the data value at which half the samples lie below, and half above.
If the number of samples,n, is odd, the median will be the middle sample when
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the samples are sorted numerically. Ifn is even, the median is the average of the
two middle values.

Note that the median is entirely insensitive to outliers, e.g., if there is a data point
that is 100σ away from the mean, it will not affect the median more than if the
point was, say, 3σ away from the mean. This is why the median is regarded as a
robust estimator.

The simplest way of calculating the median is to sort the entire array of data sam-
ples into ascending order, and then find the middle value(s). However, this is com-
putationally wasteful, and there are more efficient algorithms that you should ex-
plore if the time taken for this calculation is of importance to you.

2.3.4 Percentile points

A generalisation of the concept of the median is to define, e.g., the 5% and 95%
points in the distribution. These are, respectively, the points at which 5% and 95%
of the distribution lie below them.

3 Modelling data

Very often in physics there is a need to compare measurements with a model of
some sort. The measurements will all have associated uncertainties (we usually
assume that the samples come from a Gaussian distribution, with a well-defined
variance). The model will depend on various parameters. We wish to determine the
model parameters from our observations, to estimate the errors in the parameters,
and to determine whether the model is a good fit to the data.

3.1 Chi-square minimisation

Suppose we have an observed quantityy, which is a function of some input quantity
x. Further assume thatx can be set precisely, and that the resulting measurements
of y follow a Gaussian distribution with standard deviationσ. Further, suppose we
have a model functiony(x; p0 . . . pm−1) which attempts to predicty givenx using
a model withm parameters,p0 . . . pm−1. Then, we can define a quantity called
“chi-square” as follows:

χ2 =
n−1∑
i=0

(
yi − y(xi; p0 . . . pm−1)

σi

)2
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It is clear thatχ2 will be zero if the model fits perfectly. Our aim is to choose
values for the parametersp0 . . . pm−1 such thatχ2 is minimised (note that it is
never negative).

3.2 Least-square minimisation

For the simple case where theσ for eachyi are the same, minimisingχ2 is equiva-
lent to minimising

n−1∑
i=0

(yi − y(xi; p0 . . . pm−1))
2

which is just the sum of the squares of the differences between the model and the
measurements. Hence,least-square minimisationis a special case of chi-square
minimisation.

3.3 Fitting a straight line to data

One of the simplest models is a straight line fit

y = y(x; a, b) = a + bx

Using chi-square minimisation, the solution can be derived analytically to be

a =
SxxSy − SxSxy

SSxx − (Sx)2

b =
SSxy − SxSy

SSxx − (Sx)2

where

S =
n−1∑
i=0

1
σ2

i

; Sx =
n−1∑
i=0

xi

σ2
i

; Sy =
n−1∑
i=0

yi

σ2
i

Sxx =
n−1∑
i=0

x2
i

σ2
i

; Sxy =
n−1∑
i=0

xiyi

σ2
i

and we can also derive the variances in our estimates ofa andb:
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σ2
a =

Sxx

SSxx − (Sx)2

σ2
b =

S

SSxx − (Sx)2

and if we are really clever we can estimate whether the data is well-fitted by a
straight line. We do this by calculating

Q = gammaq

(
N − 2

2
,
χ2

2

)

where gammaq is theincomplete gamma function. If Q is between about 0.1 and
1, then the data is well-fit by a straight line. IfQ is less than about 0.001, then the
line is a poor fit.

NOTE: the above formulae are not ideal for numerical computation, since they are
susceptable to round-off errors due to subtracting quantities that can have almost
the same value. Rearranging the formulae, and using a two-pass algorithm as we
did for calculating the variance, can improve the situation. SeeNumerical Recipies
in C for details.

3.4 Fitting polynomials

You need at least as many data points as you have coefficients in the polynomials.
E.g., a second-order polynomial (a quadratic) has three coefficients, and will give
an exact fit to any three(x, y) pairs.

You should choose the smallest number of coefficients that reasonably fit the data.
Using more coefficients is likely to result in oscillation and instabilities in regions
where the model is not well constrained. This is particularly problematic when
trying to extrapolate beyond the available data.

3.5 Fitting arbitrary functions
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