Dennis Stello's page
on astronomy
The Kepler satellite at Ball Aerospace & Technologies
Corp.
I am an astrophysicist at the School of
Physics at the University of New South Wales where I am
heading the Stellar Oscillations Group.
To contact me see my contact details.
My main area of research is asteroseismology
-- the study of stars through the interpretation of their
oscillations -- which aims to understand stellar structure and
evolution.
In particular, my interest and expertise are within:
- Observation and interpretation of stellar oscillations
- Modelling stellar evolution and pulsation
- Solar-like oscillations
- Stellar clusters
- Red giant stars
- Automatic data analysis software
Dennis Stello's publications and
Resume/CV.
Main research infrastructure:
Space-based data: My main
research is centred around the analysis of data from NASA's
Kepler, K2, and
TESS missions. My role as
member of the Kepler Asteroseismic Science Consortium (
KASC)
and leader of two working groups involved the target selection and
analysis of Kepler data. I also work on the Kepler mission's new
life, called K2, which we are using for
Galactic Archaeology.
I am chair of the working group working on the asteroseismology of
red giant stars in the TESS Asteroseismic Science Consortium (
TASC).
SONG: I am part of the
Stellar
Oscillation Network Group, which uses ground-based
high-precision radial-velocity measurement to detect the Doppler
shift of stars caused by their oscillations.
M67 open cluster
campaigns. I led a global multi-site observing campaign with
about a dozen telescopes in Australia, Asia, Africa, Europe,
North- and South America. The aim was to detect stellar
oscillations on a large number of stars that were all 'born' at
the same time out of the same cloud of interstellar gas. I was
part of the core team that re-observed the stars with NASA's K2
mission, and led the publication reporting the team's first
result.
What
is
Asteroseismology?
When
you blow through a trumpet, plug the string of a guitar, or
move your finger across the rim of the wine glass to make it
ring, you are creating standing sound waves. These sound
waves depend on the physical properties of the 'ringing'
object, such as its size and shape, its temperature, and
what it is made of. For example, a full wine glass with
water sounds differently than when it is empty. If you play
a trumpet at room temperature it sounds differently than if
you had just taken it out of a freezer. And while a violin
and a cello look very similar you will have no trouble
telling which is which purely from the sound they produce.
In a similar way astronomers can obtain knowledge about the
interiors of stars, like their size, temperature, and
internal structure by measuring the frequencies of the
oscillations caused by standing sound waves inside the
stars. This technique-- called Asteroseismology -- is
analogue to 'Earth'-seismology where geologists measure
sound waves in the Earth triggered by earthquakes to find
out what the Earth's interior is made of. |
The oscillations in a star makes the star ring like a large
spherical bell, with regions of compression and expansion as
illustrated in the cartoon as yellow and red regions.
Detecting the oscillations can be done by measuring the Doppler shift of the
light from the surface of the star, which measures the speed
by which the surface is literally moving in and out as the
star oscillate (vibrate). The surface of a star like the Sun
will only move in and out by about 100m with speeds of a few
metres per second, roughly walking speed, while a more
evolved star like a Red Giant will oscillate more vigorously
with amplitudes 10 to 100 times larger. Another technique is
to measure the brightness
of the star as it changes due to the compression and
expansion. These brightness variations are of the
order of a few parts per million (less than 0.001%) for a
Sun-like star, and about 0.01 to 0.1% for a Red Giant.
It is truly amazing that these tiny oscillations in a star
many light years away can be measured from Earth!
Listen to the sound
of the stars (sound based on observed frequencies,
scaled to the human audible range):
alpha Cen A A star
slightly older and bigger than the Sun.
xi Hydrae
A more massive and much more evolved red giant star,
with a radius 10 times that of the Sun.
Red giant
concert Starting with the sound of a small red
giant you will gradually hear three stars of
increasing size - entering the "red giant
concert".
|
|

Oscillating star (credit: DASC)
|
Current students:
Fan Wu (PhD: University of New South Wales)
Sabine Bolwell (PhD: University of New South Wales)
Previous students:
Madeline Howell (PhD: Monash University) => Now Postdoctoral Fellow at OSU
Claudia Reyes (PhD: University of New South Wales) => Now Postdoctoral Fellow at ANU
Sai Malla (PhD: University of New South Wales) => Now in industry (Data Analysist)
Marc Hon (PhD: University of New South Wales) => Now Postdoctoral Fellow at MIT
Tommy Lee (Hons: University of New South Wales)
Lauren Taylor (Hons: University of New South Wales) => Now graduate at the Australian Defence Force
Shabib Rizvi (MSc: University of New South Wales)
Rudy Xu (Hons: University of New South Wales) => Now in industry (Civil Engineering Consulting)
Doug Compton (PhD: University of Sydney) => Now in industry (IT)
Joel Zinn (PhD: Ohio State University) => Now Faculty at CSU Long Beach
Beau Bellamy (MSc: University of Sydney) => Now in industry (Data Science)
Jason Drury (Hons+PhD: University of Sydney) => Now in industry (Data Analysist)
Jacob Richter (Hons: University of Sydney) => Now in industry (Software Engineering)
Julie Lykke (MSc: Aarhus University) => Now in industry (Patent Attorney)
Enrico Corsaro (PhD: University of Catania) => Now Faculty at University of Catania, Italy
Timothy White (PhD: University of Sydney) => Now in IT University of Sydney
Daniel Huber (PhD: University of Sydney) => Now Faculty at University of Hawaii
Media and outreach:
-
A cradle of Sun-like stars show how sound can trace interior changes as stars grow old (April 2025).
Claudia Reyes and her supervisor Dennis Stello (University of
New South Wales
Sydney) used the sound from star quakes among a group of stars born together to reaveal the changing interor structure of stars as they become red giants towards the end of their lives; the results will provide new means of age-dating stars in the Milky Way.
SciTechDaily
Space Daily
Independent
Mirage News
The Conversation
YaHoo News
-
The age of one of
the oldest stars in Milky Way measured using
stellar vibrations (Jan 2020).
Based
on data from NASA's TESS mission, a team of astronomers including
Dennis Stello (University of New South Wales
Sydney) age-dated the bright naked-eye
star nu Indi to be one of the oldest in the Milky Way; the
results help shed light on some of the early events that
formed our galalxy.
The
Sydney
Morning Herald
-
The sound of thousands of stars reveals age of the Milky Way's old
thick disk (Dec 2019).
Sanjib Sharma (University of Sydney) and Dennis Stello (University of
New South Wales
Sydney) used the sound from star quakes to age-date over a
thousand stars in the Milky Way, which resolved a previous
impasse between our model of the Milky Way and state-of-the-art
data from NASA's Kepler mission.
Sci-News
Cosmos
Magazine
Universe
Today
SciTechDaily
-
GPU-enhanced
AI reveals the
true age of
old Sun-like
stars (May
2017).
PhD
student Marc
Hon and his
supervisor
Dennis Stello
from the
University of
New South
Wales Sydney
developed a
novel image
recognition
technique
using
artificial
neural
networks to
detect subtle
differences in
the
frequencies of
sound inside
stars observed
by NASA's
Kepler
mission. The
result enabled
the team to
distinguish
stars in
different
stages of
their lives,
something
previous
methods had
not been able
to do. This
advance opens
up for
automated
large scale
analysis of
thousands of
stars in great
detail.
Inverse
NVIDIA
blog post
-
Stellar sounds
tells us that
stars align
(March 2017).
An
international
team led by
Enrico Corsaro
(Catania) and
joined by his
previous PhD
supervisor
Dennis Stello
from UNSW
Sydney, made
the surprising
discovery that
stars in two
old stellar
clusters show
strong
rotational
spin alignment.
The results
suggest that the
rotational
energy of star
forming clouds
can be
significant
compared to
their turbulent
energy, which
was unexpected
by theory.
The
Australian (press) (pdf)
Australian
Geographic
Cosmos
Magazine
New
York Post
ScienceDaily
- Astronomers find ancient magnetic
field hiding inside retired stars
(January 2016).
A team led
by Dennis Stello, and
including Daniel Huber and Tim
Bedding, from
the University of Sydney
has found that strong magnetic
fields in the cores of stars
are common.
ABC
AM (radio)
ABC 1 (TV) news report (download)
(youtube)
The
Australian (press)
La
Repubblica (press)
- Kepler 37-b: The smallest planet found
(February 2013).
The
discovery of Kepler 37-b marked the smallest
planet found so far. With a size similar to our
moon this was a
tremendous feat;
suggesting that small planets are abundant in
the Galaxy. Dennis Stello and Tim Bedding at the University
of Sydney helped pin down the size of the host star
(Kepler 37) and hence that of the planet itself.
Science
Alert
-
A year of swashbuckling advances (February 2012).
The
Age's annual review of the big things in the world of
science anno 2011 gives special mention to
astrophysicists Dennis
Stello and Tim Bedding
at the University
of Sydney and their recent results on the asteroseismology of a
planet hosting star.
The
Age
- Aging stars are slow on
the outside but fast on the inside (December 2011).
Discovery
of fast spinning cores in old red giant stars.
ABC
Science
CampusDaily
The
Sydney Morning Herald
-
Asteroseismology confirms habitable Super-Earth around
Sun-like star (December 2011).
The
team at the University of
Sydney used data from NASA's Kepler Mission to measure the
mass and size of the planet hosting star Kepler 22 and found it to
be almost identical to the Sun.
The
Sydney Morning Herald
The
Herald Sun
-
Star quakes in hundres of stars (January 2010).
The
first results from the Kepler Mission led by the team at
the University of
Sydney.
CampusDaily
ABC
Radio
National (TheScienceShow)
UniverseToday
- Launch of NASA's Kepler telescope (March 2009).
The
first mission to be capable of detecing Earth-sized
planets orbiting distant sun-like stars.
Astronomers at the
University of
Sydney will use the Kepler data to study stellar
oscillations.
The
Australian
ABC
Science
-
Northern star breathes new life (July 2008).
After over 100 years of decline in its oscillation amplitude the
Northern star takes astronomers by surprise.
ABC
Science
la
Repubblica
The
Herald
The
Scotsman
- Ultrabass Sounds of the
Giant Star Xi Hya (April 2002).
The
first asteroseismic observation of a star very different
from the Sun.
ESO press release (ESO
PR
10/02).