
PHYS2160	  –	  Lecture	  4	  –	  The	  Milky	  Way	  (3)	  

Last time 
 
•  Brief background on stars, interiors, atmospheres and evolution (main sequence, giant 

branches, AGB & Sne return material to the ISM) 
•  Luminosity, Effective Temperatures, Lifetimes. Spectral Types 
•  Population I and Population II 

This Time 
•  The Interstellar Medium 
•  Extinction 
•  How the ISM collapses into stars and planets 
•  Stars and Planets 
 



PHYS2160	  –	  Lecture	  4	  –	  The	  Milky	  Way	  (3)	  

The Interstellar Medium (ISM) – Shu Ch 11, ZG Ch 15 
is the gas (roughly 99%) and dust (roughly 1% - condensed molecular material containing 
silicates, graphite, silicon carbide, polycyclic aromatic hydrocarbons, water ice …) in the 
space between the stars. Typical sizes range from just a few molecules up to ~1µm (much 
smaller than the dust in your house!) 
 
ISM was discovered as “stationary” absorption lines in the spectra of spectroscopic binary 
stars (Hartmann 1904) – that is stars where the velocities of the two stellar componentises 
varied, but there was a third component that did not move.. 
 
Total dust mass is small, but its impact on astronomy is significant – it stops us seeing the 
Galactic centre in visible light, or seeing the dense regions where stars form. This is 
primarily because it produces Rayleigh scattering, which has an efficiency that scales as 1/λ 
(though there is also some actual absorption of photons, and remission at longer 
wavelengths as well). The impact of this iis known as extinction, and has the property that 
blue light is more subject to extinction than red light. 
 
Can parameterise this as an ‘extra’ extinction term added into the estimation of distance. 
	
 	
m – M = 5 log d – 5 + Aλ. 
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The Interstellar Medium (ISM) – Major Components 
 
The major components we’ll concern ourselves with are the Molecular Clouds (the dense, 
cold locations where stars form), the Cold Neutral Medium (easily seen in our galaxy and 
other galaxies in radio lines at 21cm wavelengths and so a good tracer of the dynamics of 
galaxies), and HII regions (really easily seen in the optical and near infrared and often 
associated with massive star formation). 
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The Interstellar Medium (ISM) – Major Components 
 
 
 
 
 
 
 
 
 
 
 
The major components we’ll concern ourselves with are the Molecular Clouds (the dense, 
cold locations where stars form), the Cold Neutral Medium (easily seen in our galaxy and 
other galaxies in 21cm radio lines and so a good tracer of the dynamics of galaxies), and HII 
regions (really easily seen and often associated with massive star formation). 

Table of Components of the ISM 

Component Frac. 
Volume 

Scale 
Height 
 (pc) 

T 
 (K) 

Density 
(cm-3) H state Primary observations 

Molecular clouds < 1% 80 10-20 102—106 H2 
Radio and infrared molecular  
emission and absorption lines 

Neutral Medium       
Cold (CNM) 1—5% 100—300 50-100 20—50 HI HI 21 cm line absorption 

Warm (WNM) 10—20% 300—400 6000-10000 0.2—0.5 HI HI 21 cm line emission 
Warm Ionized (WIM) 20—50% 1000 8000 0.2—0.5 HII Hα emission and pulsar dispersion 

H II regions < 1% 70 8000 102—104 HII Hα emission and Radio recombination lines 

Coronal gas 
Hot Ionized Medium (HIM) 30—70% 1000-3000 106—107 10−4—10−2 

ionized 
(even 

metals) 

X-ray emission; absorption lines of highly 
ionized metals, primarily in the ultraviolet  

!
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The Interstellar Medium (ISM) – Calculating Extinction 

The observed flux intensity (Iobs) will be related to the unabsorbed flux intensity (Iunabs) by 

	
 	
Iobs = Iunabs e –τλ	

where τλ is the optical depth, which is defined as the integral of the number density of absorbers along the 
line of sight, times the cross sectional area of the particles σλ=πa2  and their extinction coefficient Qλ. 
(There is a tutorial problem that will look at derivation of this exponential form). 

	
 	
τλ = σλ ∫0L n(l) dl = π a2 Qλ  ∫0L n(l) dl	

If we have a uniform density distribution along the line of sight (0➝L), (i.e. n(l) = n) then the integral 
reduces to	


	
 	
τλ = πa2 Qλ  n L	

We can then relate the magnitude difference observed to the flux ratio Iobs/Iunabs 

	
 	
Δm = 2.5 log (Iobs/Iunabs) = 2.5log(e –τλ)	

	
 	
       = 2.5 × 0.434 × τλ = 1.086 τλ = Aλ.	

We find that the optical depth (which is dimensionless) ends up having a numerically similar value to the 
extinction (measured in magnitudes, which is just a flux ratio and therefore also dimensionless).  
 
The extinction, therefore tells us about the product of the path length through clouds, the space density of 
the absorbing particles, their cross-section, and their absorption coefficient. 
 



The Interstellar Medium – Nebulae 
Nebulae – literally “clouds” (from the Latin). Some are seen primarily in emission, and some in absorption. 
–  Dark nebulae : opaque clouds, blocking light from behind. (e.g. Coalsack). Extinctions AV > 25 (i.e. more 

than 10 orders of magnitude of absorption) are not uncommon 
–  Reflection nebulae : are seen in scattered light illuminated from one side. Since scattering efficiency ∝ 1/λ, 

blue light is scattered more efficiently, so reflected light will appear to be bluish (e.g. Pleiades). 
–  HII regions : seen primarily in atomic emission lines (especially Hα at 656nm). These are  typically produced 

when gas is photo-ionised by ultraviolet photons  
(i.e. E= h𝜈 > 13.6eV or λ<91.2nm) most commonly  
from nearby hot O-type and B-type stars (i.e. stars  
with Teff>20000K, which emit significant UV flux). 
 
When an electron and a proton recombine, the 
system will “cascade” down to the ground state 
producing a characteristic recombination spectrum. 
 
The “HII” refers to the nebula containing  
singly ionised H (“HI” means neutral H), which 
emits photons as electrons and protons recombine. 
 
The division between the ionised and neutral gas is  
often very sharp, at a distance from the ionising  
source called the Strömgren radius – as a result these  
regions are often known as Strömgren spheres. 
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Hα	  (656nm)	  

Hβ	  (486nm)	  
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The Interstellar Medium – Nebulae – Examples 
 
The Coalsack Nebula – a dark cloud between us and a rich field of background stars. Note 
there’s also a HII region in the same field … can you spot it?) 
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The Interstellar Medium – Nebulae – Examples 
 
Reflection Nebulae : The Pleiades (left) and the Ophiucus star forming region (right). Which bit of 
the Ophiucus image is a reflection nebula? Which is a dark nebula? What else? 
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The Interstellar Medium – Nebulae – Examples 
 
HII Regions : The Great Carina Nebula. Spot the ionising stars?  
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The Interstellar Medium – Strömgren Spheres 
Consider a pure H cloud of uniform density, surrounding a hot star.  
Let N✻ be the number of photons with energy >13.6 eV (i.e.  
ionisation energy of H). Assume every photon ionizes one H atom.  
Let R by the the number of recombinations of the resulting  
protons (p) and electrons (e-) per unit volume per unit time. 
In equilibrium, the number of recombinations and ionizations  
balance, so 
  4/3π r3 R = N✻ 
The recombination rate scales with np and ne, and these densities  
will be equal for charge neutrality 
  R =  α npne = α ne

2 
where  α is the recombination coefficient (which depends on the T of the plasma). (Note that 
recombination here means only recombination to excited states of H, since recombination to 
the ground state just results in another ionizing photon. Recombinations to other states 
produce photons with e<13.6eV, and these can then escape the nebula.) The radius of the 
resulting ionized sphere is then 
  r  =   [ 3N✻  / (4πα ne

2) ]1/3 
For a typical HII region α≈3×10-13 cm3/s, ne≈10cm-3, N✻≈4×1046s-1 (for an O5 star), which 
implies r≈2pc. 
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The Interstellar Medium – More Nebulae 
 

–  Planetary nebulae : compact regions with higher gas densities excited by the 
UV flux from a very hot white dwarf. Gas in these higher density regions is 
excited by collisions between electrons, ions and atoms, resulting in 
substantially different spectra from HII regions.  
 
The shells of gas illuminated (which have arisen from mass loss as the white 
dwarf shed its envelope after the AGB phase as discussed last lecture) typically 
expand with velocities of tens of km/s 

–  Supernovae remnants : The gas ejected and swept up by supernova 
explosions. Gas is ejected at high speed and driven into the the interstellar 
medium. The resulting shock wave results in very high densities, which excite/
ionise gas to millions of K, resulting in an emission nebula. These temperatures 
are sufficiently hot to result in X-ray emission. 
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The Interstellar Medium – Nebulae – Examples 
 
Planetary Nebulae: The Ring Nebula – a “classical” planetary (left), The Cat’s eye (HST) showing 
they can be much more complicated, reflecting the complex mass ejection pulses of the AGB … 
(right) 
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The Interstellar Medium – Nebulae – Examples 
 
Supernova Remnants : The Crab (left) a young compact remnant from SN1054, and N49 in the 
Magellanic Cloud (right) an old, extended remnant. 
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Star Formation – Gravitational Collapse 

Stars form in molecular clouds – randomly shaped agglomerations with an essentially chaotic 
density distribution. Even in this densest part of the ISM (102-106 cm-3) density is tiny compared to 
(say) the Earth’s atmosphere (1019 cm-3). 
 
Jeans Criteria - when does a clump of the interstellar medium become gravitationally unstable?  
Consider a spherical cloud of ideal gas with radius r, total mass M and mean particle mass m. The 
cloud will have gravitational energy Egr 

  Egr ≈ GM2/r 
A small radial compression of the cloud (dr) will produce a decrease in its gravitational energy of 
  dEgr = GM2/r2 dr 
at the same time the volume will decrease by dV = 4πr2dr, and the thermal energy will grow by 
dEth=PdV 
 
Using the ideal gas equation PV = nkT (where n is the number of particles in the volume), we get 
  dEth = nkT 4πr2dr = 3 M/m kT dr/r             (have substituted M=volume.n.m)) 
The cloud will be unstable to collapse if the the absolute value of the decrease in gravitational 
energy dEgr  is greater in absolute value than the increase in thermal energy dEth. From this we 
can derive a series of Jean’s criteria for total cloud mass, radius and density (see Tutorial 
Problems). 
  MJ = 3kTr/(Gm)  rJ = GmM/(3kT)  ρJ = 3/(4πM2) [3kT/(Gm)]3 

From this we can find that a cloud of H2 of 1000M⦿ at 20K has a a Jean density of ρJ ≈ 3×1024 

gcm-3 or n(H2) ≈ 1cm-3 – if the density exceeds this, the cloud will be unstable and collapse 
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Star Formation – Gravitational Collapse 
n(H2) ≈ 1cm-3 is significantly less dense than the 102-106cm-3 densities mentioned earlier. 
Why don’t all molecular clouds collapse immediately? 
 
Real clouds are not spherical. They don’t have uniform density. They have chaotically 
distributed density distributions and are turbulent. And they are threaded by magnetic fields. 
 
If we consider a smaller clump (say 1M⦿ or 103 times less massive) within the cloud with the 
same density, then Jeans density will by 106 times larger. 
 
So the ‘peaks’ of the density distribution (i.e. the most dense regions) will tend to collapse 
first. 
 
This gravitational instability leads to the formation of protostars 
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Star Formation – Protostars and Accretion Disks 

The inner regions of this collapsing region will eventually form a hydrostatically supported 
core – a “protostar”. This will continue to accrete material, growing in mass. 

But what if the material being accreted comes from a region of the ISM that has some net 
angular momentum? That angular momentum will be conserved. Imagine a region of 
collapsing material 1pc across, that has a rotation across it equivalent to a 1km/s difference. 
If this material collapses down under gravitational instability to being just 1au across, then 
the product 1pc.1km/s is conserved meaning the rotational velocity at 1au must be 
~200,000km/s=0.66c! 

To actually collapse to 1AU (let alone the surface of the protostar ~0.005AU) angular 
momentum has to be dissipated. Until that happens the materials will remain in orbit about 
the star. The result is the formation of an accretion disk, in which viscous and magnetic 
processes transport material in and angular momentum out. 

Meanwhile, the central temperatures and pressures continue to rise. Above the minimum 
temp for H fusion (~3 million K) fusion reactions can begin and the star “turns on”. 

(Below the hydrogen burning minimum mass (0.08M) this is never triggered. These objects 
“brown dwarfs” continually radiate energy and cool, which means they fade with time 
becoming both fainter and colder. Gas giant planets do the same thing of course (cool), so 
like brown dwarfs, their intrinsic luminosity is a function of time.) 
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Star Formation – Protostars   
and Accretion Disks 
 
The “canonical” sketch 
 
a Globule of material in the 
ISM become gravitationally 
unstable. 
 
b A protostar core forms, with 
material accreting via an 
accretion disk 
 
c The accretion disk generates 
a polar outflow. 
 
d Nuclear burning initiates 
which causes the star to 
dissipate the accreting material 
leaving only a naked disk, that 
eventually itself dissipates. 
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Star Formation – Protostars and Accretion Disks 
 
Detailed 3D simulations give a picture for just how complex this process is in 
detail. See, for example, animations by  Matthew Bate, Exeter 
http://www.astro.ex.ac.uk/people/mbate/Animations/ 
 
“The following calculation models the collapse and fragmentation of a 500 solar 
mass cloud, but resolves the opacity limit for fragmentation, discs with radii as 
small as 1 AU, and binary and multiple star systems. The calculation produces a 
cluster containing 183 stars and brown dwarfs, including 40 multiple stellar 
systems (i.e. binaries, triples and quadruples) to allow comparison with stellar 
observations.” 
 
Animation available on the PHYS2160 Part I Materials page. 
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Matthew Bate, Exeter http://www.astro.ex.ac.uk/people/mbate/Animations/ 
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Planet Formation within Accretion Disks 
Traditional theories of planet formation seek to explain: 
1.  Terrestrial planets. Rocky or icy planets have composition very different from disc gas. These must have 

formed from collisional growth of dust or ices in the nebula. 

2.  Giant planets. In principle, these could form: 
1.  Via core accretion. A core of ~10 Earth masses is formed as for terrestrial planets, then accretes an 

envelope of gas. (This is currently the model most likely to have produced the solar system. 
Exoplanet detections can be made consistent) 

2.  From gravitational instabilities in the protoplanetary disc. 
3.  Like stars – i.e. from fragmentation during collapse of molecular cloud cores. 

 
Core Accretion “Stages” 

1.  Settling and growth of dust grains in disk 
2.  Pebbles and boulders to km-sized planetismals 
3.  Planetismals to planet-sized bodies / giant planet cores 
4.  Ice accretion onto giant planet cores 
5.  Gas accretion onto icy planet cores 

The last stages suggest giant planets should only form in the outer regions of accretion disks beyond the “ice 
line” or “frost line”. 
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Exoplanets – How to find them 
First planet around another star discovered in 1995 (51 Peg b). Now almost >1000 confirmed, and 
thousands more solid candidates from the Kepler satellite. Two main ways of finding them are transits and 
radial velocity (or “Doppler wobble”) 
Transits – measure relative radius of the planet and star. Very strong bias/cost against long period. 

 
Depth ~ (Rp/Rstar)2=(dp/dstar)2 

 
Rjupiter = 71,000km => Depth ~0.01 
          => Depth for Earth ~ 1 ppm ! 
 
1% photometry fromground 
is easy, 0.1% is hard. 1ppm is 
impossible – you need a space-based 
telescope (like Kepler or COROT). 
 
Likelihood of transit ~ dstar/a, but P2Mstar=a3  
(Kepler’s third law) so 
                Likelihood ~ dstar/(P2/3 M1/3) 
1.2% for Mercury, 0.5% for Earth, 0.09% for Jupiter 
 
Q: Why might finding long period systems be very costly? 
 

 
 
 

 



Star Formation – Exoplanets – How to find them 
Doppler Wobble – Planet and star move about barycentre of system, so unseen planet will cause star to 
“wobble”, which can be seen as a periodic radial velocity variation. For a planet with inclination to line of 
sight i, mass m2, eccentricity e, period P and orbiting star of mass m1, 
 
 
 
 
 
 
 
And if m2 << m1, (planet much smaller than star) we can further simplify to  
 
 
 
Jupiter induces wobble of ~12m/s over a 12 year period in the Sun, while Earth induces ~100 mm/s. 
These are challenging velocity precisions to reach over long period of time. 
BUT all parameters are modulo “sin i” term. Since an elliptical orbit always projects to an ellipse on the 
sky, this degeneracy can never be removed from radial velocity data alone. 
Good simulator of Keplerians at http://astro.unl.edu/naap/esp/animations/radialVelocitySimulator.html  
 
 
 

 

26  THE RADIAL VELOCITY 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The radial velocity method of detecting extrasolar planets involves taking precise measurements of a 

star’s radial velocity with an optical telescope. Each measurement is associated with a specific time and 

a plot can be created showing the star’s radial velocity as a function of time. 

 

If a previously undiscovered planet exists in orbit around the observed star, the data in the plot will 

show a repeated trend and a curve can be fit to the data connecting each of the individual radial 

velocity data points (shown in Figure 11).  

 

 

Figure 11 – Plot of radial velocity vs. time for the host star indicating how the period, P, and radial velocity semi‐amplitude, K, can be 

determined from the data. (Image Credit: Planetary Systems and the Origins of Life, Cambridge University Press, 2007) 

 

The radial velocity semi‐amplitude of the host star can then be determined from the plot. It is equal to 

half of the total amplitude of the fitted curve (as seen in Figure 11). Note that the period, which is the 

total amount of time elapsed between two consecutive peaks of the fitted curve (and is the same for 

both the host star and orbiting planet), can be determined from the plot as well (as seen in Figure 11). 

 

If preferred, the dependence on a1 in the quantity K1 can be removed. This will be our next task. 

 

Kepler’s 3
rd
 Law relates the semi‐major axis of a planet’s orbit to the period of its orbit as follows: 

 

(Eq 52) 

 

Solving Eq 52 for a2 gives: 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Therefore, 

 

(Eq 53) 

 

Now we need to refer all the way back to page 7 and Eq 4. With our “new” knowledge of ellipses, we 

can now recognize that the r1 in Eq 4, which is the magnitude of the vector pointing from the CM to the 

star, is simply the semi‐major axis of the star’s orbit around the mutual CM, a1. With the same 

reasoning, the r2 in Eq 4, which is the magnitude of the vector pointing from the CM to the planet, is 

the semi‐major axis of the planet’s orbit around the mutual CM, a2. Therefore, 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or, solving for a1: 

 

(Eq 54) 

 

 

Substituting Eq 54 into Eq 50 gives: 

 

(Eq 55) 

 

Substituting Eq 53 into Eq 55 gives: 

 

(Eq 56) 

 

The process of simplifying Eq 56 goes something like this: 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Therefore, 

 

(Eq 53) 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the way 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page 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can 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that the r1 in Eq 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the 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of the 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the 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to the 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is 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the semi‐major axis of the star’s orbit around 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CM, a1. With the same 

reasoning, the 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in Eq 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which 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the 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of 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55) 

 

Substituting Eq 53 into Eq 55 gives: 

 

(Eq 56) 

 

The process of simplifying Eq 56 goes something like this: 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28  THE RADIAL VELOCITY EQUATION   

 

This is the point at which we utilize the fact that 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m
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>> m
2
 and so our answer is not significantly 

affected if we use the following approximation: 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Now we can continue our simplification: 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Therefore, in its most common form, the equation for the radial velocity semi‐amplitude of the star is: 

 

(Eq 57) 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Exoplanets – What we’ve found 
900-odd Doppler exoplanets as at 2 July 2013 
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Star Formation – Exoplanets – What we find 

Significant number of exoplanets are found in orbits they shouldn’t be in under basic “core accretion” model. Gas 
giants inside ~2au should not be able to form there … 
The current working solution is that they did form at larger radii, but migrated in to smaller radii due to 
interactions between the forming gas giant and the gas disk, which exert torques on the planet and so remove 
angular momentum and so move them to smaller radii. 
Only a very few examples yet found of planets low enough in mass and at the right orbital separation from the 
host star to be habitable. 
See, e.g., Kepler 22 (http://en.wikipedia.org/wiki/Kepler-22),  
and GJ677C (e.g. 2 Feb 2012 news item at  
http://www.phys.unsw.edu.au/~cgt/cgt/Homepage.html) 
Or Kepler 452b announced 2 weeks ago  
(http://www.nasa.gov/ames/kepler/kepler-452-and- 
the-solar-system) 
Sadly our best option for finding these systems (Kepler)  
failed a while ago (see e.g. https://theconversation.com/the- 
end-of-kepler-that-would-be-universally-bad-15953 and links  
therein), though it has been zombified as the K2 mission  
(http://keplerscience.arc.nasa.gov/K2/) , and there’s more  
light on the horizon in the form of the NASA TESS mission  
(http://tess.gsfc.nasa.gov ) 
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Useful constants, units, and formulae:

Gravitational constant G = 6.67 × 10−11 N m2 kg−2

Speed of light c = 3.00 × 108 m s−1

Planck constant h = 6.626 × 10−34 J s
Boltzmann constant k = 1.38 × 10−23 J K−1

Stefan-Boltzmann constant σ = 5.67 × 10−8 W m−2 K−4

Mass of the hydrogen atom mH = 1.67 × 10−27 kg

Solar mass M# = 1.99 × 1030 kg
Solar radius R# = 6.96 × 108 m
Earth mass M⊕ = 5.98 × 1024 kg
Equatorial radius of Earth R⊕ = 6.378 × 106 m
Mass of moon Mmoon = 7.3 × 1022 kg
Astronomical unit AU = 1.496 × 1011 m
Parsec pc = 3.086 × 1016 m
Hubble’s constant H0 = 70 km s−1 Mpc−1

Distance modulus m − M = 5 log d − 5 (d in pc)
Apparent magnitude m2 − m1 = 2.5 log f1

f2

For small recession velocities v/c = ∆λ/λ
Definition of redshift (1 + z) = λobs/λrest

Energy and frequency E = hν
Frequency and wavelength c = νλ
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