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Last time 
 
•  flux, luminosity and distance 
•  apparent magnitude (or more usually just “magnitude”), absolute magnitude & distance 

modulus 
•  flux/luminosity in a given bandpass vs bolometric (or “total integrated”) flux/luminosity 
•  trigonometric parallax and definition of the parsec as a fundamental distance unit 
•  star counts as a way to probe the properties of a population of stars 
•  basic picture of the Milky Way 
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Halo	  
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Disk – stars (young and middle-
aged stars like Sun), gas, dust 
 
Central Bulge/Spheroid – stars (but 
largely hidden from view by the disk 
of the Milky Way). 
 
Halo – globular clusters and old 
stars (which are asymmetric relative 
to the Sun) 
 
The Sun orbits at 8kpc with velocity 
220 km s-1.  
 
Galactic ‘year’ ~230 Myr. 
Mass of Galaxy ~ 6x1011M¤. 

Bulge	  

Disk	  

Sun	  

8kpc	  
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Co-ordinates 
The Cartesian (x,y,z) three dimensional co-ordinate system 
(that we all know and love) is not very useful in astronomy.  
We observe the Universe projected onto a sphere at 
enormously large distances, so a spherical-polar co-ordinate 
system makes much more sense. 
 
We can easily measure the pair of angles – (α, δ) in the 
example below – to very similar levels of precision, and be 
left with the separate problem of how to measure the 
distance (r) 
 
We most commonly use an Earth-based co-ordinate 
“equatorial” system where the place that defines the co-
ordinate α – known as “right ascension” – is based on the 
Earth’s equator, and the axis that defines the δ co-ordinate – 
known as “declination” – is based on the Earth’s axis of 
rotation.  
 
It’s basically a celestial projection of the longitude/latitude 
system used to navigate on the surface of the Earth. 
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Co-ordinates 
In this co-ordinate system, the stars have 
(more-or-less) fixed co-ordinates, and the 
whole system appears to rotate above us. 
 
As noted before measuring (α, δ) to the 
same levels of precision is straightforward. 
Typically getting precisions of 
0.1” (1/1,296,000th of a full circle) is 
straightforward, and to 0.001” (1 
milliarcsecond or mas) is doable with effort. 
 
Measuring distances to objects in the 
Universe to better than 10% is typically quite 
hard to do. 
 
(α, δ)  can be reported in units of decimal 
degrees or in radians, but are more 
commonly reported in sexagisamal notation 
– Hours:Minutes:Seconds for α and 
Degrees:Minutes:seconds for  δ. 
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Velocities 
Just as we can define a velocity vector for any 
particle in a three dimensional space … 
 
So we can define one in our equatorial co-ordinate 
system (α, δ, r). The relevant velocities are μα, μδ, vr	

 
The first two are angular “proper motions” across the 
sky (i.e. velocities in the plane tangent to the 
celestial sphere at that point, and aligned with the 
right ascension and declination directions at that 
location on the sky) and a “radial velocity”, which is 
the velocity towards or away from us along the line of 
sight. 
 
μα, μδ are straight forward to measure, by taking pairs 
of observations separated in time … 
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Proper motions 
For example - at right are three images of the very 
cool “brown dwarf” UGPS0722 from 1998 to 2010. 
Three circles highlight the object’s at each epoch. 
Additional observations (below) allow one to perform 
a solution for both proper motion and parallax. 
 
Proper motions are typically expressed in arcsec/yr 
or sometimes as millarcsec/yr = mas/yr 
 
The orthogonal proper motion components in the 
right ascension and declination directions can be 
combined in quadrature to give the total amplitude 
of the proper motion. So in the case of UGPS0722 
         μ2 = μα2

 + μδ2	


         μ   = √(906.92 + 351.02) = 972.4 mas/yr	

 
The total proper motion is 0.972”/yr. (These data are 
how the parallax mentioned last time are measured. 
In this case the object lies just 4.2pc away. 
 

The fastest known object (measured by apparent 
proper motion) is Barnard’s Star at 10.37”/yr at a 
distance of 1.834pc. 
 

Lucas et al. 2010 MNRAS, 408, 56. http://arxiv.org/abs/1004.0317v2 
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Tangential Velocity 
If the proper motion and distance is known, then one can determine the physical velocity of the 
object (in the tangential plane of the sky) using 

	
 	
 	
 	
vT = 4.74 μ  / π 
for vT in units of km/s,  if μ has units of arcsec/yr and π has units of arcsec. 
 

Radial Velocity 
Radial velocities are determined using the Doppler shift to provide the velocity along the line of 
sight. 
If you know the rest wavelength of a spectral line as obtained in the laboratory here on Earth (λrest), 
and then observe the same spectral line in an astronomical object at a different wavelength (λobs) 
then the difference between those observations is the Doppler shift and provides the relative line-
of-sight velocity 
                            For     Δλ = λrest – λobs       then        vr = c Δλ  / λobs  
Where c is the speed of light. It is always quoted in the sense that motions toward you (called 
“blue shifted” because λobsis smaller [and so bluer] than λrest ) are +ve, and motions away 
(“redshifted”) are -ve. Total space velocity V is then just the sum of all three components of the 
space velocity 
           V2 = vr 2 + vT

2 = vr 2 + vα2 + vδ2	

	


The measurement of positions, velocities and brightnesses form the core of much of modern 
astronomy. 
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Galactic co-ordinates viewed from outside Milky Way	   Galactic & equatorial co-ordinates viewed from the 
Earth	  

 

Galactic Co-ordinates 
Just as one can define an equatorial spherical-polar co-ordinate system based on the 
orientation of the Earth (because it’s useful), so one can define a Galactic spherical-polar 
co-ordinate system based on the orientation of the Galaxy. 
Galactic co-ordinates are centred on the Sun, and defined by two angles  

I is the Galactic longitude defined to be zero in the direction the Galactic centre 
b is the Galactic latitude defined to be zero in the galactic plane 

The Galactic centre direction lies in the constellation of Sagittarius  
at α = 17h45m40.04s, δ = -29° 00' 28.1” 
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The Disk (1) 

Geometry: Flattened structure of material (stars, gas, dust) that orbits the centre of the Milky Way on 
predominantly circular orbits. Its density is reasonably well parameterised as an exponential disk 
in both the radial and vertical directions 
             𝜌(r,z) = 𝜌0 exp( -r/rd) exp (-z/hd) 
The radial scale length is  rd = 3.5±0.5kpc, so at the Sun’s 8kpc radius its 
density is only ~10% of that at the Galactic centre, placing us well into the  
outer regions of our Galaxy. The characteristic scale height hd is around  
330pc for older stars like the Sun. The Sun lies within about 30pc of the mid-plane of the disk. 
 
Gas and Stars : As well as a dense population of stars, the Disk 
also contains a significant reservoir of gas. It is this gas that is  
responsible for on-going star formation in the Milky Way. 
The gas and dust disk has a significantly lower scale height  
(around 160pc) than the disk of older stars (330pc), as do the  
very young stars currently forming from this gas and dust. 
It is also this gas that is slightly concentrated by travelling spiral  
density waves to produce the spiral arms, that are the dominant  
visual feature of most galaxy disks. These density waves are  
believed to trigger gravitational instabilities in dense clouds of  
gas, which in turn initiate the formation of young stars. It is these  
bright, hot young stars which produce the clearly visible spiral arms. 

Young hot stars trace out the spiral arms in 
M51 (HST) 
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Galaxies are almost entirely “collisionless” systems as far as stars are concerned 
The mass of stars in the Milky Way disk within the inner 3.5kpc (one scale radius) is about 1010M☉.  
If we assume the average mass of a star is about 0.5M☉, than that implies some 2×1010 stars. To get a 
number density lets assume they occupy a volume given a cylindrical disk of radius 3.5kpc and thickness 
2×330pc … so  
  n* ~ 2×1010 / (  π(3500pc)2 × 2 × 330pc ) ~ 1pc-3. 
Or a mean distance between stars of d=1/∛n* ~ 1pc. 
 
Ignoring gravity for the time being, the mean free path for a star to make a direct collision with another 
star will be 
                                            l ~ 1/(n* σ) 
Where σ is the geometric cross-section for collision. For a solar radius star σ = π(2r☉)2, which means  
l ~ 4.8×1030m = 1.5×1014pc. That’s a very large number compared to the size of the galaxy! 
 
Or put another way, given the average random velocities of stars relative to each other of about 20km/s, 
this corresponds to a mean time between direction collisions of 2.4×1026s or 7.6×1018yr –  almost a billion 
times longer than the age of the Universe. 
 
In practice, gravitational focussing (i.e. nearby stars attracting each other) increases this cross section by 
a factor of ~1000. But this is not enough to change the fact that collisions in a disk are incredibly rare. 
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The Bulge/Spheroid and the Stellar Halo 

Geometry: predominantly spherical “cloud” of stars on randomly distributed elliptical orbits. Stellar density 
that falls off as ~ 1/r3. 
 
Stellar Halo : is revealed by (1) globular clusters, and (2) as a population of  
“high velocity” stars in the solar neighbourhood (Since Halo stars are on  
predominantly “radial” orbits they are “left behind” by the circularly orbiting stars  
of the disk, including the Sun). 
 
Stars in globular clusters and the halo (and the bulge) are old (ages in the range 
10-14Gyr) and have much lower “metallicities” than that seen for stars in the Solar neighbourhood.  
 
Metallicity is “astronomer speak”(i.e. historical and a bit silly) for the relative abundance of heavy elements 
in a star, compared to the amount of hydrogen. The elements in the Universe heavier than Li have all 
been formed in the cores of stars, and returned to the interstellar medium via stellar winds or supernovae 
explosions.  
 
So very old stars will tend to have lower metallicities because their formation material has been through 
less cycles of enrichment. Metallicity is usually paramatrised via the Fe/H abundance ratio written as [Fe/
H], which refers to the logarithmic Fe/H ratio relative to that of the Sun. 
 
A star with [Fe/H] = -4.0 (i.e. Fe abundance 1/10,000th that of the Sun) is considered quite metal poor, 
and the current record for the lowest metallicity star known is ~ [Fe/H] < -7 (Keller et al. 2014, Nature, 
506, 463). The overall density of this Halo population is very small compared to that of the disk 
(~1/10000th) at the Galactic radius of the Sun. 



The	  “Bulge”	  is	  readily	  apparent	  –	  the	  “Halo”	  is	  not.	  It’s	  
only	  easily	  seen	  via	  Globular	  clusters,	  and	  “high	  velocity”	  

stars	  near	  the	  Sun.	  
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The Bulge/Spheroid and the Stellar Halo 
Bulge / Spheroid :  similar geometry (and density profile) to the Halo, but is much more obvious in the 
Galactic central region because its density is much higher. It is not clear whether it and the Halo are the 
same population (i.e. the halo is an outer extension of the bulge), or distinct ones. Similar bulges are seen 
in almost every spiral galaxy. 
It is believed that many (if not most) galaxy bulges are host to a massive black hole … 
 
In our own Galactic centre, the use of very high resolution imaging techniques at infrared wavelengths 
allows the stars near the Galactic centre to be monitored. These proper motions allow the orbits of objects 
to be tracked, which reveals the presence of a dark, compact, massive object at the Galactic centre. 
 

Left: An HKL-band colour mosaic of 
the region around the black hole at 
the Galactic centre: H(1.8 µm) = 
blue, K'(2.2 µm) = green, L'(3.8 µm) 
= red.  
 
Right: Blow-up of the 0.8”×0.8” 
region around the position of the 
supermassive black hole (labelled 
Sgr A*).  
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Early data : 1992-1998                                                                    Later data! 

A 2.2 micron animation of the stellar orbits in the central parsec. Images taken 
from the years 1995 through 2011 are used to track specific stars orbiting the 
proposed black hole at the centre of the Galaxy.  
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Astrometric positions and orbital fits for 2 
stars, within the central 0."8 ×0."8 of the 
Galaxy, that show significant deviation from 
linear motion for measurements obtained at 
the Keck telescopes between 1995 and 
2012. 

Positions are plotted in the reference frame 
in which the central dark mass is at rest. 
Overlaid are the best fitting simultaneous 
orbital solutions, which assume that all the 
stars are orbiting the same central point 
mass.  

These two stars have orbital periods of ~ 16 
and ~ 11 years. 

These orbits, and a simple application of 
Kepler's Laws, provide the best evidence yet 
for a “supermassive” black hole, which has a 
mass of 4 ×106M☉.  

Our Milky Way has a fairly small black hole at its centre … as we will see later, other galaxies have 
much larger ones, and it may well be that almost all galaxies harbour black hole at their centre. 

used a c2-minimization routine to find the best-fit
orbital parameters (7). The six orbital elements
describing the star’s trajectory are the period,
eccentricity, time of closest approach (periapse
passage), inclination, angle to periapse, and angle
of the ascending node. The seven parameters
describing the gravitational potential are mass,
3D position (distance from Earth and focal point
of the orbital ellipse) and 3D velocity of the
point mass.

We have covered a complete orbit of S0-102
with astrometric observations. Therefore, the
data contain enough information that they can
in principle be used to fit for both the star’s
orbital elements and also for the parameters of
the potential (19). However, this requires the
same low level of systematic effects in the data
as for S0-2, which dominates our current knowl-
edge about the potential and is a factor of 16
brighter than S0-102. Considering that fainter
sources are much more prone to source confu-

sion than brighter ones, it is unlikely that S0-102
has the same low level of systematic errors (7, 8).

Away of minimizing the effects of possible
confusion is to not fit for the potential, but rather
fix it to the values that have been derived from
the orbit of S0-2 (table S4). This left only S0-102’s
orbital elements free, which were then found
by fitting the data (Fig. 2). Overall, the data are
well fit by this model, which has a reduced c2

of 2.0. The most discrepant points are the two
epochs in 2009, both of which lie 2.3s away
from the best fit. This is the region around closest
approach to the black hole, where Sgr A* and
S0-104 (20), which are blended in this epoch,
are very close [∼55 milli–arc sec (mas)] to S0-
102. This constellation most likely leads to an
astrometric bias, which supports our conserv-
ative approach of fixing the parameters of the
potential.

We determined uncertainties on S0-102’s or-
bital parameters via Monte Carlo simulations as-

suming Gaussian error statistics. Using the best
fit and the error bars on the measured data points,
we generated 105 artificial data sets and fitted an
orbit to each realization. The probability distribu-
tion functions for the orbital elements are the dis-
tribution of best-fit values from the Monte Carlo
simulations (Table 1). This approach assumes that
the positional errors are statistical in nature and
does not account for possible systematic contri-
butions such as unrecognized source confusion.

Our high–angular-resolution imaging cam-
paign of the galactic center started in 1995, con-
stituting a time baseline of 17 years, 7 of which
were carried out with deep AO observations. Al-
though this is long enough to detect accelerations
(i.e., curvature) of several stars within the cen-
tral arc second, it allows a reliable orbit deter-
mination only for the shortest-period stars. We
consider an orbit reliable if it is likely that an
increase in data and a decrease in noise do not
lead to major changes in the orbital elements. As
a rule of thumb, 50% of the orbit needs to be
covered by observations in order to determine
the orbit reliably (21). Our data set traces S0-102
through a complete orbit, making it the only
star other than S0-2 for which such a fraction
of the orbit has been sampled. The key property
that enabled this orbital coverage is S0-102’s
period.

With an orbital period of 11.5 years, S0-102
has the shortest period among all known stars
orbiting the black hole in our Galaxy’s center
(Fig. 3). It is 5 years (∼30%) shorter than S0-2’s
orbital period, which was the previously known
shortest-period star. The period (or, alternative-
ly, the semi-major axis, which is related to the
period via Kepler’s law) is the most important
orbital parameter, because it not only makes it
possible to sample a substantial fraction of the
orbit by observations, but also simplifies the
detection of relativistic effects, most of which
are cumulative and build up with increasing
phase coverage until they breach the detection
threshold.

A test of Einstein’s theory of general relativity
is the next goal in galactic center research, now
that the existence of a black hole is well estab-
lished. This theory has so far passed all tests on
solar system scales with flying colors. However,
the gravitational potential D of the Sun is veryweak,
with typical experiments probing regimes of up
to D ∼GM/(Rc2)∼ 10−6. Here,G is the gravitational
constant, M the mass scale, R the distance scale,
and c the speed of light (22). The gravitational
fields that have been probed in tests using dou-
ble neutron stars such as the Hulse-Taylor binary
pulsar are of the same magnitude, because the
masses and separation of the neutron stars are
comparable to the mass and radius of the Sun
(23). In the galactic center, stars such as S0-102
and S0-2 probe gravity regimes that are two or-
ders of magnitude stronger, D ∼ 10−4.

The effects of curved spacetime manifest
themselves in two ways: The orbit of a star
deviates from its Keplerian approximation, and

Fig. 2. The orbits of S0-2
(black) and S0-102 (red).
RA, right ascension; DEC,
declination. The data points
and the best fits are shown.
Both stars orbit clockwise.
The dashed lines represent
the parts of the orbits that
have been observed with
Speckle data; the solid
lines indicate AO obser-
vations. The data points
for S0-2 range from the
year 1995 to 2012, and
S0-102’s detections range
from 2000 to 2012. The
connecting lines to the best
fit visualize the residuals.
Although the best-fit or-
bits are not closing, the
statistically allowed sets
of orbital trajectories are
consistent with a closed
orbit. S0-102 has an or-
bital period of 11.5 years, which is 30% shorter than that of S0-2, the shortest-period star pre-
viously known.

Table 1. Orbital elements for S0-102. The best fit has a c2 of 39.96 with 20 degrees of freedom.

Parameter Value
S0-102’s orbital parameters

Period 11.5 T 0.3 years
Time of closest approach (calendar year) 2009.5 T 0.3
Eccentricity 0.68 T 0.02
Inclination*† 151° T 3°
Angle to periapse 185° T 9°
Position angle of the ascending node† 175° T 5°

Parameters of the gravitational potential‡
Mass 4.1 T 0.4 × 106 MSun

Distance 7.7 T 0.4 kpc
*90° is edge-on, and 0° is face-on. †The allowed ranges for inclination and angle of the ascending node are (0°,180°).
‡The parameters that describe the gravitational potential have been taken from S0-2’s orbit. We list mass and distance here;
see table S4 for the 2D position and 3D velocity of the central mass.
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from Meyer et al. 2012, Science, 338, 84  



The Disk (2) - Rotation 
The Galactic disk does not rotate as a solid body, but rather differentially rotates – it rotates faster at 
smaller Galactic radii. This can be observed in even the Solar Neighbourhood by looking at the mean 
motions of stars in the disk. 
 
If we assume we are a ‘standard of rest’, then stars exterior to us 
are seen to lag behind, while those interior to us advance ahead. Stars 
at the same Galactocentric radius have the same velocity and  
appear not to move. 
 
In practice, stars do not have perfectly regular, circular orbits. So while 
they do tend to stay near the same Galactocentric radius, they do 
move both radially and above and below the disk. The result is an apparent 
“random” fluctuation in motion compared to the “bulk flow” of the disk – 
what are known as peculiar velocities. 
 
We define a “Local Standard of Rest” (or LSR) in our Galactic  
co-ordinate system which is the velocity an “ideal” star would 
have were it to have no peculiar velocity. (The Sun’s peculiar  
velocity relative to the LSR is ~13km/s.) 
 
How can we measure the extent of that differential rotation? 
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Fig 12.9 from Shu	
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The Disk (2) – Oort’s Constants 

Consider a star in the mid-plane of the disk with Galactic longitude l at a distance d from the Sun.  
Assume that both the star and the Sun have circular orbits around the centre of the Galaxy at radii of R and R0  from the 
Galactic centre, and rotational velocities of  V and V0 respectively. The motion of the star observed from the position of the 
Sun along our line of sight (i.e. its radial velocity Vobs,r), and motion of the star across the plane of the sky, (or transverse 
velocity Vobs,t), are then: 
 
 
 
Where α is the angle the star’s velocity makes to the line of sight. For circular 
motions, we can convert those linear velocities to angular ones (v =  Ω r), to get  
 
 
 
From the geometry in the figure, one can see that the triangles formed between  
the galactic center, the Sun, and the star share a side or portions of sides, so  
the following relationships hold and substitutions can be made: 
 
 
 
to get 
 
 
What we really want, however, is that expression in terms of observable quantities (l,d) rather than angular velocities. 
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The Disk (2) – Oort’s Constants 

To do that we take advantage of the Taylor expansion in Ω-Ω0 about the position R0. ���
Recall that for a function f near value a, one can write  
 
	

So using just the first two terms we can expand Ω (r), and rearrange to get 
 
 
And in addition as long as we are studying local stars (so d ≪  R and R0). 
 
So 
 
 
 
Using the sine and cosine half angle formulae (sin(2A)  =  2 sin A cos A, ���
cos(2A) =  2 cos²A − 1) these velocities may be rewritten as functions of 2l: 
 
 
 
 
We can write the velocities in terms of the measurable quantities and two coefficients A and B : 
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The Disk (2) – Oort’s Constants 

 
So we have the “Oort constants” A and B expressed in terms of angular rotation velocities. These can 
then be transformed into linear velocities by differentiating  Ω = v/r and substituting 
 
                                                            => 
 
 
 
What is the physical meaning of these ‘constants’? 
–  A is a measure of the shear (i.e. how much angular velocity changes with radius) in the Solar 

Neighbourhood. 
–  If A is positive, then this implies the Galaxy’s angular velocity is decreasing with increasing 

Galactocentric radius in the Solar Neighbourhood. 
–  If A is zero, then there is no shear and one would have solid body rotation (i.e. V=ΩR). In which case, 

B can be seen to just be the magnitude of the angular velocity. 
–  B describes the angular momentum gradient in the solar neighbourhood, and is also referred to as 

vorticity. 
 
 
 
 
 
 
 



The Disk (2) – Oort’s Constants 
 
As noted above …  
 
 
 
 
 
Which can be rearranged to give A and B solely in terms of measurables (radial velocity, tangential 
velocity, distance, longitude) 
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The Disk (2) – Oort’s Constants 
So, if you can measure distances, radial velocities and longitudes, and plot Vobs,,r/d���
as a function of l, you can determine A and B observationally. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using Cepheids (a class of stars for which distances can be measured – more on this later) you can apply 
an Oort model and start to understand the observed differential rotation of the Galaxy. A is indeed found to 
be non-zero, which tells us that the Galaxy is differentially rotating, and not rotating as a solid body. 
 
Modern values for A and B (Feast et al. 1997) 
      
      A =  14.8 ± 0.8 km/s/kpc "
     B = -12.4 ± 0.6 km/s/kpc 
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The Disk (2) – Oort’s Constants 
 
One can then take potential models for the rotation curve of our Galaxy (e.g. solid body, Keplerian, flat), determine what 
their Oort constants would be, and ask whether they agree with what we see (which is A =  14.8 ± 0.8 km/s/kpc,  B = -12.4 ± 
0.6 km/s/kpc). 
 
For example if orbits in the local neighbourhood followed Keplerian orbits 
 
                             which implies 
 
 
One can show that the Oort constants would be … 
… which for the known Galactic rotation and solar 
position would give A~20km/s/kpc and B~-7km/s/kpc. 
So this doesn’t match what we see. 
 
What if the rotation curve was flat (ie. V independent of radius, or equivalently dv/dr = 0? This gives  
 
 
 
 
and substituting the known solar rotation velocity and radius into that gives A~14km/s/kpc and B~-14km/s/kpc, which is 
remarkably close to the measured values. 
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The Disk (2) – Oort’s Constants 
 
So the Oort constants provide insight into the nature of the Galactic rotation curve (at least in the Solar 
Neighbourhood) … the rotation curve is more similar to a flat one, than to a Keplerian one. 
 
This is an insight we will come back to next time … when we look at Galactic rotation curves for the whole 
Galaxy (and for other galaxies) 
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•  References 
–  Feast, M.; Whitelock, P. (November 1997). "Galactic Kinematics of Cepheids from HIPPARCOS Proper Motions". 

MNRAS 291: 683. arXiv:astro-ph/9706293. 
–  Website of Andrea Ghez’s Galactic Centre group at UCLA : http://www.astro.ucla.edu/~ghezgroup/gc/ 
–  Also copies of the movies in this Lecture are available at the PHYS2160 Part I Materials page. 

•  Bibliography   
–  Shu, F. The Physical Universe, Chapter 12 (can be found on google books) 
 

Useful constants, units, and formulae:

Gravitational constant G = 6.67 × 10−11 N m2 kg−2

Speed of light c = 3.00 × 108 m s−1

Planck constant h = 6.626 × 10−34 J s
Boltzmann constant k = 1.38 × 10−23 J K−1

Stefan-Boltzmann constant σ = 5.67 × 10−8 W m−2 K−4

Mass of the hydrogen atom mH = 1.67 × 10−27 kg

Solar mass M# = 1.99 × 1030 kg
Solar radius R# = 6.96 × 108 m
Earth mass M⊕ = 5.98 × 1024 kg
Equatorial radius of Earth R⊕ = 6.378 × 106 m
Mass of moon Mmoon = 7.3 × 1022 kg
Astronomical unit AU = 1.496 × 1011 m
Parsec pc = 3.086 × 1016 m
Hubble’s constant H0 = 70 km s−1 Mpc−1

Distance modulus m − M = 5 log d − 5 (d in pc)
Apparent magnitude m2 − m1 = 2.5 log f1

f2

For small recession velocities v/c = ∆λ/λ
Definition of redshift (1 + z) = λobs/λrest

Energy and frequency E = hν
Frequency and wavelength c = νλ
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