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The criterion derived by Chakraverty and Pound for preferential nucleation of vapour condensation at 
macroscopic steps upon a crystalline substrate is generalized to apply to steps of any angle. For small 
included step angles nucleation can occur on steps even under unsaturated conditions so that they are 
always decorated; for intermediate step angles the degree of preference for nucleation at steps decreases 
as the vapour supersaturation is increased. Decoration is most easily achieved with a condensate whose 
contact angle on the substrate is either less than the complement of half the included angle of the step or 
else approximately 90”. 

CRITERES DE DECORATION POUR LES MARCHES DE SURFACE 

Le critere don& par Chacraverty et Pound pour la germination preferentielle de la condensation de la 
vapeur sup les marches mecroscopiques d’un sub&r& cristelhn, est generalis et applique auz marches 
d’angle quelconque. Pour des angles petits la germination peut se produire sur lee marches, m6me dens 
des conditions d’inseturation, de sorte qu’elles sont toujours decorees; pour les angles intermediaires le 
degre de preference pour la, germination aux marches diminue quand la sursaturation de la vapeur 
augmente. La decoration est aisement r&&see avec un condensat dont l’angle de contact sur le substrat 
est ou bien inferieur au complement de la moitie de I’angle de la marche, ou bien approximativement 90”. 

DEKORATIONSKRITERIEN FUR OBERFLdCHENSTUFEN 

Das von Chakmverty und Pound abgeleitete Kriterium fiir die bevorzugte Keimbildung bei der 
Kondensation aus der Dampfphase an makroskopischen Stufen an der OberfMohe des kristallinen 
Substrate wird verallgemeinert, so daB es fur Stufen mit beliebigem Winkel gilt. An Stufen mit kleinem 
Winkel krmn die Keimbildung selbst bei ungesiittigter Dampfphase erfolgen, so d& diese Stufen immer 
dekoriert werden; bei mittleren Stufenwinkeln nimmt der Grad der Bevorzugung der Keimbildung en 
Stufen mit zunehmender Dampfiiberaiittigung ab. Dekoration wird am leichtesten mit einem Kondensat 
erreicht, dessen Kontektwinkel 8Uf dem Sub&rat entweder kleiner als der Komplementiirwinkel des 
halben Stufenwinkels oder etwe 90” ist. 

INTRODUCTION THEORY 

For many studies of the topography of crystal 
surfaces it is common practice to observe the decora- 
tion patterns produced by the preferential conden- 
sation of a material such as gold onto steps and other 
surface features. It is known that not all combinations 
of substrate and condensate are equally effective in 
this process and it is therefore of interest to examine 
the reasons for these differences in behaviour. 

As shown by Chakraverty and Pound,(l) the ratio of 
nucleation frequency I, upon the steps on a substrate 
surface to that on the neighbouring plane surface 
itself, I,, is given by 

IL 
- = g exp [(AC,* - AG,*)/kT] 
IF 

Chakraverty and Pound (l) have applied classical 
nucleation theory to this problem for the particular 
case of steps which are large in height compared with 
the diameter of a critical condensate nucleus and 
which meet the substrate with an included angle of 
90’. As with many applications of nucleation theory, 
this approach ignores the molecular nature of substrate 
and condensate and can therefore only approach 
validity when the critical nuclei contain very many 
atoms. Useful approximate results can, however, be 
generally obtained by ignoring these complications 
and simply extrapolating the essentially macroscopic 
theory to arbitrarily small nuclei. 

where g is the fraction of surface sites occupied by 
steps (of which there may be many), k is Boltzmann’s 
constant and T the absolute temperature of the 
substrate. AGF.* and AGL* are the free energies of 
formation of critical nuclei on the flat surface and the 
step respectively and are given by 

It is the purpose of the present paper to generalize 
the results of Chakraverty and Pound to steps of 
arbitrary included angle and, from this treatment, to 
make certain general statements about decoration 
behaviour. 

AGF* = (4na,,3/3 AG,2) K(u) (2) 

AGL* = (4rracV3/3 AGV2) P(q, a) (3) 

where a,, is the condensate-vapour interfacial free 
energy per unit area of interface, AG,, is the free 
energy change on condensing vapour to form unit 
volume of condensate, and a is the contact angle of 
the condensate c on the substrate s as defined by 
Young’s relation 
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a,, = a,, + a,, co9 Q (4) 

where aij are interfacial free energies. F(q, a) is a 
geometrical factor which depends upon the contact 
angle 0: and the angle of the step 7 shown in Fig. 1. 

(1) 
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A, can be calculated by choosing the centre of the 
sphere as origin and evaluating the surface integral in 
spherical polar coordinates 

FIQ. 1. Nucleus with contact angle a on a step of angle 7. 

K(a) is the corresponding function for a flat surface 
and is given by 

K(a)=F(?r,a)=2-3cosa+cossa (6) 

Chakraverty and Pound”) have evaluated F for the 
case 7 = n/2 and obtain (after correction of a typo- 
graphical error) 

F :,a 
( > 

2 
= sin a - co9 a + - cos2 a sin2 a - cos2 a 

Tr 

_C 2 (co9 a sin2 a sin-l cot a - co8 a sin2 al 
7r‘ 

It is this factor which 
simplify. 

we must first generalize and 

Classical nucleation theory is based on the assump- 
tion that the surface free energies of the phases 
involved are isotropic so that the condensate embyro 
has the form shown in Fig. 1, with a spherical bound- 
ary surface. The generalized geometrical factor F is 
then given by 

A, = 2r2 
s s 

Pa+ a sin 8 0% (10) 
0 @l(4) 

where 

cos 8, = COB 4 - f ( )I 
[ 
tan2 a cos2 f + coS2 

( )I +-g v2 (11) 

The integration is straightforward and the expression 
for A, is 

A, = r2 - 2~ cos a + 4 sin-l (singsin!)] (12) 

The volume V can be found by choosing the centre 
of the line of intersection of the two planes as origin 
and evaluating the volume integral in spherical 
polar coordinates 

where 

p(8, 4) = - r co9 a sin 0 co8 #sin f 

1 w + r 1 - cos2 a(1 - sin2 8 cos2 $)/sin2 5 (14) 

F(ll, a) = f?! = f (A, - 2A, cos a) (7) 

where V is the volume of the nucleus, r the radius of 
curvature of its surface, A, is the area of the curved 
part of the nucleus surface and A, is the area of the 
interface between the nucleus and one of the two 
planes of the step. It is required, therefore, to evaluate 
A, and A, in terms of a and 7. 

Referring to Fig. 2, A, follows from the expression 
for the area of a sector of a circle 

where 
A, = ?p2 sin2 a(y - sin y) (3) 

cosy= cotacot! 
2 2 

Evaluating first the r-integral, then the O-integral and 

\l 
Fm. 2. Geometry used in evaluating P(q a). 
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(d) (e ) (f 1 
FIG. 3. Physical situations corresponding to entries in 

Table 1. 

finally the +-integral is straightforward, though 
tedious, and leads finally to 

V = f 
[ 
cos 01 sin2 a sin y - co9 a(3 - cos2 a)y 

+ 4sin-l (singsin:)] (15) 

These expressions (8), (12) and (15) verify the form of 
the equation (7) and we find 

F(q, a) = k 
[ 
co9 M sin2 a sin y - co9 a(3 - cos2 a)y 

+ 4 sin-l (sing sin:)] (16) 

where y is given by equation (9). This general 
expression is, surprisingly, more simple than the 
original form (6) given by Chakraverty and Pound(l) 
for the special case 7 = ~12. It can be verified, 
however, that the two expressions are equivalent for 
this special case and also that (16) reduces to the 
simple form (5) for 1;1 = 77. 

The expression (16) is valid only if 

It is, however, simple to deduce from the discussion 
above the appropriate form for F(r], a) when the 
inequalities (17) are not satisfied. These are sum- 
marized in Table 1, and sketches of the physical 
situation involved in each case are given in Fig. 3. 

Contact angle, adeg 

FIG. 4. B(q, a) as a function of contact angle for repre- 
sentative values of step angle. 

There are two entries in the table for which the volume 
V diverges and the effective radius r is negative-we 
shall return to these later. In the final entry the 
embryo splits into two spherical caps and the situation 
is equivalent to nucleation on a plane surface. 

The function F(T, a) is plotted in terms of a for 
several representative values of 1;1 in Fig. 4. Chakra- 
verty and Pound appear to have made some numerical 
errors in evaluating their more complicated expression 
(6) since F(r/2, a) does not coincide exactly with their 
curve. 

DISCUSSION 

The experimental quantity we wish to determine is 
the ratio of the amount of material deposited upon the 
steps on a surface to that deposited upon the featureless 
plane surface, for it is this quantity which determines 
the visibility of the steps and hence the effectiveness 
of the decoration process. Since, once a super- 
critical embryo has formed, its growth rate will be 
essentially independent of its location, it will suffice if 
we determine the ratio of the nucleation rates on 
steps and on the plane surface, as expressed by equation 

(1). 

TABLE 1 

Conditions on 77 and a Replace P(q, cc) by Physical situation 

Unstable Fig. 3(a) 

F(rl, a) Fig. 3(b) 
4 - 2K(Tr - c() Fig. 3(c) 
Unstable Fig. 3(d) 
4 - F(2r - 7, r - a) Fig. 3(e) 

K(a) Fig. 3(f) 



1086 ACTA METALLURGICA, VOL. 18, 1970 

,.OOr I I I I A 
L ! ! ! ! 

I\ r=u.uzu 
_ ^ a^^ 

P= 0.015 

P~O.010 

0.25 

40 60 60 100 120 140 160 
I 

160 

Contact angle, a deg 

FIG. 5. Difference between the geometrical factor on a flat surface, K(a), and that 
on * step of angle 7, P(q, a), as a function of contact angle for representative 

values of step angle. 

Taking the logarithm of this equation and sub- 
stituting from (2) and (3) we have 

Thus decoration is effective if IL > I, or 

3AGv2kT 
K(a) - F(q, a) > - 4rrb,,3 In 9 E - p In g (19) 

From the discussion given by Chakraverty and 
Pound, a typical value for g is 104, and a typical 
value for the factor P multiplying In g in (19) is 0.01. 
This factor P depends critically, of course, on the 
temperature of both vapour source and substrate 
since these control the vapour supersaturation near 
the substrate, which is measured by AG,,. 

Figure 5 shows K(a) - F(q, a) plotted as a function 
of a for several values of q. Also shown are horizontal 
lines giving the value of the right hand side of (19) for 
various vapour supersaturations, assuming g = 10p4. 

Decoration is effective whenever the curve lies above 
the line specifying these experimental conditions. 

From these curves several things are immediately 
obvious. The K-F curves rise to infinity as soon as 
a < (rr - ‘17)/2 as given by (17). Under these con- 
ditions vapour condensation can occur at the step 
even under unsaturated conditions, since the curvature 
of the embryo surface is negative. This will always lead 
to effective decoration. When this condition is not 
satisfied, then decoration is most effective for a small 
range of contact angles around a = 90”. For a given 
step geometry 17 and contact angle a, the decoration is 
most pronounced for a small value of P and hence for 
a small vapour supersaturation. Alternatively, for a 
given vapour supersaturation, steps of small re-entrant 
angle are more effectively decorated than are steps 
of larger 7. The convex edges of steps, for which 
7 > 180”, are never decorated. 
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