Propagant phase in reverberant environments
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The phase of the transfer function between two points in an extended system can be easily measured
if it is taken to be the accumulated phase obtained by smoothly raising the measurement frequency
from zero to the reference frequency. Lyehal, in an extended series of papénsost recently J.

Acoust. Soc. Am95, 286—296(1994 ], have examined the behavior of this accumulated phase in
systems of two and three dimensions and have elucidated the concept of a reverberant phase which
is independent of the separation between the two measurement points, provided they are far enough
apart, but which rises sharply with increasing frequency. In some applications, for example, in
nondestructive testing of extended structures, it is important to be able to observe simple
wave-propagation behavior and in particular to measure the propagant phase as a function of
frequency and position. The conditions under which this is possible are investigated, and are shown
to impose constraints on the ratio between the propagation distance and the size of the structure
under test, and either the material damping coefficient or the reflection coefficient at the domain
boundaries. These results, which represent an extension of those ofetybnare discussed in

terms of the distribution of zeros of the transfer function in the complex frequency plane. Many
platelike structures of practical interest are found to satisfy these conditions, so that measurement of
propagant phase behavior can provide the basis for a useful technique of nondestructive
examination. ©1996 Acoustical Society of America.

PACS numbers: 43.40.At

INTRODUCTION separations. He termed this plateau value the reverberant
phase.
In a significant series of papers over the past decatle, Much of the motivation behind this investigation was

Lyon et al. have explored the behavior of the phase of therelated to the possibility of recovering clean signals in a re-
transfer function in extended systems of one, two, and thregerberant environment by means of inverse filtering. Our
dimensions. This phase is normally evaluated by effectivelyresent interest is rather different, and concerns the use of
sweeping the measuring frequency from zero up to the frepropagant phase as a diagnostic tool in nondestructive
quency of interest, and “unwrapping” the jumpsran the testing®® In either case, however, it is important to be able to
measured phase to give an “accumulated” phase. This phagéistinguish the influence of the reverberant environment on
is not necessarily equal to the phase difference to be exhe measured signal. More specifically we explore here the
pected from consideration of the number of wavelengths ofonditions under which it is possible to recover the propa-
the propagating wave at the frequency of interest that coul§ant phase of a signal from measurements made in an ex-

be accommodated between the two points, which we mightlended reverberant environment. It is clear from general con-
term the propagant phase. siderations that such propagant phase is certainly observed

Lyon! showed that, while in a one-dimensional systemclose to the source in systems that are sufficiently large and
’ ave sufficient material damping. We shall be concerned

such as acoustic waves in a pipe the accumulated phase Ii%] ) .
the transfer function between the generator and an arbitra erefore with the transition from reverberant to propagant
ehavior as system size and damping are varied.

measuring point is always approximately eqQaithin 7/2)
to the propagant phase between the two points, the accumu-
lated phase difference in a two-dimensional system is usuall
many times the magnitude of the propagant phase differencg. POLES AND ZEROS

The difference in behavior is bound up with the behavior of ¢ original analysis of Lyon is based upon the analytic
waves reflected from the boundaries of the system, thugym of the transfer function expressed in terms of the nor-
forming a pattern of standing waves, and was analyzed by,a| modesy, of the system, where the index has the
Lyon?in terms of the system’s normal modes. He was able Qlimensionality of the system itself, being,(m), for ex-
identify the behavior of the accumulated phase as it rosgmple, for the vibration of a planar object. If the time varia-
from zero(to within =) for very small separations between tion is represented by exp()t)1 the moden has a resonance
excitation and measurement points, to a steady value veryt angular frequency,, at which the damping coefficient is
much larger than the expected propagant phase at larges For simplicity we initially takex to be the same for all
modes, corresponding to resonances of constant width. The
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w, and the evolution of the phase is computed by adding the
contribution of each pole and zero. If the damping is very

small, the polesw, of the transfer function lie close to the
PAENE real axis and, if the system is not large, are well separated.

. ~ The phasep,, of the transfer function then decreases by

. N wheneverP passes a pole af,, and conversely increases

A N by 7 wheneverP passes a zero. To within an additive con-
Realfrequency @ T stant*r, the phase of the transfer function is thus given by

FIG. 1. Polesx and zerosO of the transfer function in the complex fre- b1 w)~—m(Np—N,) (6)
quency plane according to the simple model of Lyéor a system with 12 @ T Np—Nz)s

frequency-independent dampirg The accumulated phase up to real fre-
quency(} is evaluated by counting the number of poles and zeros passed

. . AvhereNp is the number of poles ard, the number of zeros
more properly, by summing the changes in phase angles shown.

of Z,, below the frequencw.
For a given upper frequency, there is a separation

(1) Pn(r2) Ir,—r,|, equal to about half a wavelength at this frequency,
Zyw)=consi X, —y—p——. (1 below which all the residues,(r,.r,) are of the same sign,
n wh,—wt2jea n

so thatey,(w) is zero to within an additive-7r. In a system

We note that the mode functiong, are real, and that the of two or more dimensions, however, the signs of the resi-

constant depends upon the physical quantities being medues become random with increasing distance, so that

sured. N,~Np/2. The accumulated phase then takes on the large
It is straightforward to convert the expressi@h to a  and nearly steady valugr~ — 7Np/2 that is called the re-

form that exhibits explicitly the poles of the transfer function verberant phase. Experimérghows that this is what hap-

in the complex frequency plane. If we write the denomina-pens in practice for reasonably small systems with low

tors of the expansiofil) in the form damping.
This simple analysis, however, conceals a dilemma.
02— 0’ +2jwa=02—(w—ja)? (2
n J n Je), Clearly the phase oZ;,(w) should really be evaluated by
where adding the phase change contributed by each pole and each
zero rather than by simply counting their number between
Q= (w2—a?*? (3)  zero and the measurement frequercyWe examine this in
) terms of the distributiongp(2) andg,({), of poles and
then we can rewrit¢l) as zeros, respectively, along the pole lifiet j«. Each pole or
zero contributes a phase change that depends upon its fre-
an(ry,ra) an(ry,ra) . . .
Ziw)=2, 0 _ia o0r0—ial (4)  quencyQ and dampingx in the form of the difference be-
nleoTSnT e oT i) tween two inverse tangent functions evaluated at the ends of
where the residues, (r,,r,) are given by the integrati_on intervg{o,w) along the real frequency axis.
Because tamn* x is defined to have a value betweens/2
B (1) n(r2) and 7/2, the discontinuity whef)=w and x goes through
an(ry,r2) = consi 20, ' (5 infinity provides the simple count w(Np—N;) of (6), and

) . ] there is a remainddD (w) of the form
The poles are seen to lie at the point),+ja and thus

along a line in the upper half-plane, as shown by the .

symbols in Fig. 1. - _j _
Location of the zeros of the transfer function is more D=F(w.a0) 7oc[gp(Q) 9]

difficult, and it was not until the third paper of the sefiésat

this was addressed properly by Tohyama and Lyon. The —tan! ﬁ”dg

original analysis of Lyoh? considered only zeros lying on Q

the line w=Q+ja in complex frequency space, and noted w0 aw

that, since in the region between two poles the function is ~—2f [9p(Q)—gz(Q)] 2 dQ, )

dominated by the contributions of those poles, we expect to @

find a zero if the residues are both of the same sign and no

zero if they are of opposite sign. Since the residues are esvhereF(w,«,g) is a finite constant, the value of which de-

sentially random in sign for a system of two or more dimen-pends upon its arguments. Under the reverberant-phase ap-

sions provided that the separatiga—r,| is large, the aver- proximation,g;~gp/2 and the integral in7) diverges, ex-

age number of zeros is about half the number of poles on angept in the case of ideally thin rodgj4~Q 9, ideally

reasonably long segment of this line. flexible strings (gp~constant, or ideally thin plates
Following the original development of Lyon, the process(gp~constankt For all three-dimensional systems, and thus

of measuring the accumulated phase of the transfer functiofor all real physical systems, the integral diverges. If the

is as shown in Fig. 1. The representative pothtmoves integral diverges, then the remainder is infinite, and so

along the real axis from zero to the measurement frequencglso is the correction to the expressi@).

tan !

a
O—w
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FIG. 2. More realistic distribution of the poles and zero<O for systems

with (a) constant damping an@) damping increasing with increasing fre-

Consider now the case of a system with constant damp-
ing « as the size of the system is increased. Suppose we
concentrate attention on a frequency range from zero to some
value Q,,.,, within which range the numbers of poles and
zeros are necessarily finite. As discussed above, the zeros of
the transfer functiori4) are either on the line&=Q+ja or
distributed in pairs at points{{; ,+ja)*jd,, where the
guantitiess,, are finite and positive. As the size of the system
is increased, keeping its shape constant, modes in the fre-
quency range(0,Q,,) Will be compressed into the range
(0,0,,./m™), wherem is the linear magnification factor of
system size ani¥l is the dimensionality of the system. At the
same time, the relative positions of all the poles and zeros
about the linew=ja will remain geometrically similar to
those of the original range, so that the distancé&sin the
complex plane will becom@s,/mM. The cloud of zeros thus
tends to condense toward the pole line as the size of the
system is increased. We are concerned, however, not with the
general distribution of these zeros, but rather with the abso-

quency. Zeros are either on the pole line or else distributed in pairs abovRjte number of zeros lying in the lower half-plane.

and below it. Zeros marked with filled circles that lie below the real axis are
nonminimum-phaséNMP) zeros and contribute to the reverberant phase.

Tohyama and Lyof® gave attention to the distribution
of the zeros ofZ,, and showed that, in the complex plane
w=0+jy, the probability distribution of these zeros be-

Although this dilemma escaped attention, its solutionhaves asymptotically like Bf, where 8=gp(y—a) is the
appears naturally from later work by Tohyama and Lyon, asormalized distance away from the pole liae=j«a. Be-

we now outline. Clearly, the transfer function given (#)
can be rewritten as

. 3 flo—ja) ®
12 0)= My(0xQ,—ja)

and, if we truncate the sum i7) and thus the product i(8)
at some arbitrarily large valug of n, then the numeratdris
a polynomial of degreel2—1 in w while the denominator is

cause this distribution diverges &s-0, they assumed an
integrable probability distribution function of the form

\/;/77

p(B)= Tt ep?’ 9

wheree is an arbitrary shape constafithere is a difference
of a factor 2 betweerf9) and the original because we have
used signegs rather thar{8|.] Since, by their arguments, the

a polynomial of degreeq. This conclusion remains valid as density of zeros on the pole linegs/2, this leaves a density

N—. Thus, although the number of zeros on the line9p/2 of zeros to pe described by the probability distribution

w=ja is only half the number of poles once the separatior9), and the density of NMP zeros becomes

and frequency are large enough for the field to be reverber- .

ant, the remaining\ zeros occur as pairs that are symmetn- I = — f p(B)dg. (10)

cally placed above and below that line as shown in Fig. 2. 2 )«

Zeros that are above the real axis cancel the phase contribu-

tion of an equal number of poles, and it is only the If the modal density is sufficiently large thap®>1 below

nonminimum-phase zerdslIMP zeros for shojtlying below  the real axis, then we can use the asymptotic forn©Opin

the real axis with which we must be concerned. Convergencgl0) and we find thagyup = 1/(27Ta\/;).

of the remainder expressidi) requires that the density of If the dampinga is constant, then the density of NMP

these zeros along the frequency axis must increase less rageros is constant in frequency, whiledfincreases with in-

idly than Q' € wheree is a small positive quantity. creasing frequency, thegyp({2) decreases with increasing
We note that the B—1 zeros do not necessarily all lie Q. It is this densitygywe that we must use, rather than

within the frequency range {Q,,Qy) on the real fre- g;—0gp, in the remainder terr® of (7). Its form guarantees

guency axis, though most of them do. In fact we shall seeonvergence of this remainder except for the physically un-

later that, in general, the distribution of zeros is slightly realistic cases in which the damping is zero or in which the

stretched along the frequency axis, relative to the distributiomlamping actually decreases with increasing frequency at a

of poles. An examination of the case of two isolated polegate more rapid thaf .

with real residues of opposite sign shows that the zero lies The distribution of poles and zeros, for the case of con-

outside the frequency interval spanned by the poles. Thistant damping, is thus qualitatively of the form shown in Fig.

does not, of course, prove the more general assertion, b@ta). As discussed by Tohyaret al.>~’ the essentially con-

suggests its plausibility. We shall see the importance of thistant distribution in frequency of NMP zeros below the real

point presently. It was mentioned in passing by Tohyama andxis leads to a steady increase in the phase of the transfer

Lyon,? but its consequences were not investigated. function with frequency, and the derivative of this increase
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can be interpreted as a “group delayg . Since each NMP While this approach can be extended to other one-
zero, along with its noncancelled pole, contributest@ the  dimensional systems such as thin rods, it is not generally
phase, we can write possible to find a closed analytic form for the transfer func-
tion for systems of higher dimensionality unless the symme-
try of the boundary is high and eithef or r, is a point of
special symmetry. Nevertheless we know from experiment
that it is possible to observe simple wave propagation behav-
ior in two- and three-dimensional domains provided that ei-
ther the walls or the propagating medium itself are suffi-
ciently absorbent. Observation of such propagant behavior is

in which « increases with increasing frequencyg de- . .
. .most clear when the domain is very large compared with the
creases. When the total modal density, and thus the densi .
avelength involved.

of NMP zeros, is small, the increase of phase with frequency We also know, however, that particular wall geometries

may exhibit fluctuations because of the statistical distribution ", ;
of these zero&’ and positions of the source and measurement points may lead

Notice that the group delas; does not depend upon the to focused echos that complicate the behavior. This observa-

distance between the excitation and measurement points,,tl<'§\)n suggests that it may not be possible to derive completely

o ) general conditions under which propagant behavior can al-
characteristic of reverberant behavior that was commente . .
upon by Lyon in the original paner of the serfadie will see V&S be observed. The generality of the phenomenon in

b y oy 9 pape : - . . large enclosures indicates, however, that we should be able
later that we need to amend this assertion, and with it th

o . 0 adduce a moderately well founded argument that will ap-
Loerrrra\(/)ifotrhe distribution(9), in order to account for propagant ply provided the reverberant field is sufficiently diffuse, and

thus for all except such singular cases. We proceed in this
spirit.

1
TGZZWgNMP:_\/E- (11
(04

If the mode dampingr is independent of frequency, theg
is also independent of frequency, and we must cheeskto
give agreement with other studig$n the more general case

Il. PROPAGANT PHASE IN AN EXTENDED SYSTEM

Lyon’s demonstratiohthat one-dimensional systems al- A. Amplitude conditions
ways exhibit simple propagant-phase behavior rested upon As a first approach, we note that the measured accumu-
the possibility of expressing the transfer functiot) in  lated phase will be equal to the propagant phase if we can
simple closed form for the particular case of acoustic waveshow that the amplitude of the directly propagated wave at
in a pipe. If the pipe length i with a source ak; and a the measurement poimt, is always much greater than the
detector ak,, then amplitude of the reverberant field at that point. Suppose that
coskx, cosk(L—x,) the source is_ Ioca_lted ai for all our supsgquent discus_sion.

i , (12 Then the pointr, is always a singularity in the wave field,

sinkL though the nature of the singularity depends upon both the
wherek= w/c and we can writev=Q+ ja to allow for the  dimensionality of the system and the nature of the differen-
effects of damping. Lyon showed that this case exhibitdial operator(whetherV? or V%) in the wave equation. At a
simple propagant-phase behavior. Since frdr®) all zeros  distance from the singularity that is greater than about half a
lie on the pole line, there are no NMP zeros to be consideredyavelength, the propagating wave amplitude decreases as
and it is then necessary to ask, in terms of the distribution of Ae Y2l
poles and zeros, whence the phase shift associated with p(r,)=
propagation arises.

The existence of simple propagant phase behavior in thizshere M is the dimensionality of the domain andis the
case implies that the number of zeros in any finite frequencgpatial attenuation rate for plane-wave propagation. If the
range is systematically less than the number of poles by aboundaries are perfectly reflecting them= a/c wherec is
amount just sufficient to generate the propagant phase. Thike wave speed andis the mode damping coefficient intro-
can be readily established from the form(@2). The number duced in Sec. I. If the energy reflection coefficighis not
of zeros of the denominator below a particular value of fre-unity, then this influences the relation betweerand y, as
guency, and thus &, large enough to encompass many reso+we show below.
nances isp~kL/7, while the number of zeros of the nu- The average amplitude of the reverberant field can be
meratornz~k(L +Xx;—X,)/ 7, both approximations holding estimated from considerations of energy conservation. Sup-
to within an additivex1. The deficit of zeros in the range is pose that the mean radius of the domairMndimensions is
thus np—nz=k(x,—x,)/7 which provides the propagant R so that its enclosed “volume” is aboit=BRM and its
phase. We must presume that this stretching of the distribusurface “area” isS=BMRM ! whereB is a number about
tion of zeros along the frequency axis is a common feature ogqual to 3. The rate at which energy is being supplied to the
all systems, even when we are unable to write down an exreverberant field is proportional to
plicit closed form for the transfer function. This deficit of _
zeros causes no analytical difficulties because, for any real [4p(R)]"cSo~A"cMBe =75, (14)
three-dimensional system, the density of both poles and zevhere § is the energy reflection coefficient of the boundary.
ros tends to infinity as the frequency increases. The rate at which energy is being lost from the reverberant

212: constx

lrem 1
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field, taking account of both volume and surface losses, is
similarly proportional to @ e fe

2yyAVe+ ya(1- 8)Sc~ByiRM 1c[2yR
+(1-96)M], (15
where ¢x is the peak amplitude of the reverberant field.
Equating the two quantitiedl4) and(15), we find
) sMe™ "R
YR~ RV T 2yRT (1= )M ]

0 time ——»

AZ, (16) (b)

The condition that the propagating wave dominate com-
pletely over the reverberant field at distarice-r,|=r from

the source is therefore that |
e 27 Se” R M

—T > - . 1 0 ime ————»
r.M 1 RM 1[2’)’R+(1_5)M] ( 7) time

- s e . i FIG. 3. () Schematic version of the signal measured in the time domain
The condition(17) can be satisfied if <R, and is facili following an impulsive excitation at=0. The signal consists of a directly

tated if 5<1 so that the boundaries are highly absorbent, or ifyropagated pulse, followed by a diffuse and exponentially decaying rever-
yR>1 andr<R, so that the propagating wave is largely berant signal. The total time delay is the sumrpfand 5 . (b) When the

absorbed before reaching the boundaries but not before gicitation and measurement points are both well distant from the boundary
reaches the observation point of the domain, the detected signal consists of a directly propagated impulse

. . 2 followed, after a significant time interval, by an attenuated reverberant sig-
From (15), which can also be written @Byg, we can  nal,

express the modal decay constanin terms ofy and § by
the relation

the normal propagant phagie.= Qr/c, wherer =|r,—r,| is
a=(c/l2R)[2yR+(1—-6)M] (18  the distance between source and detector. Since these contri-
butions are additive, the condition that propagant phase be-

using which,(17) can be written havior be observed would appear to be thhat< ¢p or

r)""l c

— >R"

a> se~2v(R71) =

(19 a>cl2r. (21

) ) i We see in the next section, however, that El) presents
If we wish to observe propagant behavior over essentially a'broblems.

of the domain, then we let— R and assume tha¥1, which

- An interpretation of(21) in the time domain is particu-
leads to the condition

larly instructive. For a measurement of this type, as used for
a>c/2R. (20 example by Tohyameet al,” the source emits a delta-

. . . ... function impulse and the response measured at a distant mi-

_We ShQUId again make th_e pq|nt that Fh's cono_lmon IScrophone is subject to Fourier analysis to recover the phase
valid only if the reverberant field is truly diffuse, with no behavior. Figure @) shows the sort of time record expected

“catastrophe” surfaces or points caused by boundary reflecy, s case. This record can be interpreted in terms of two

tion. In this context, a catastrophe point is one at which thedelays as we have indicated above. The delay to the first

energy density is particularly high for purely geometrical; uls;e received at the microphone is the phase defay
reasons. Such catastrophes are common in both acoustic an ile the weighted average of the subsequent reverberant

geperally, as caugtic surfaces. Elliptical or gllipsoidal bo“,”d'iglIr;/acljgcrg;:ggsr(et\r/]srggr):t?og,eil?jéug rillczr-}-’hfg :0?; (\j\;(e?gﬂti}ar:j
aries to the domain can lead to 'd‘?a' focu_smg and a maxim elay is effectivelyrp+ 7, and the condition that propagant
divergence from the simple behavior leading to the Cond't'orbehavior be observed is then, as discussed above, simply that
(19), while circular or spherical surfaces lead to somewhat_ "~ "\ iu 1004 1o the co’nditioﬁZl) '
more complex catastrophe surfaces. Our generalized argu—P G '
ments do not refer to the neighborhood of such special points

or surfaces. C. Discussion

It is immediately clear that the conditiori20) and(21)
appear to be essentially identical if we tet-R in (21). This

Another approach to the problem is by way of our ear-apparent agreement is, however, spurious. We can see this by
lier discussion of nonminimum-phase zeros. From that discomparing the more detailed expressiqh8) and (21) for
cussion it is clear that the accumulated phase measured atlae physically realistic case in whigh<R so that measure-
point at some distance from the source can be considered toents are being made relatively close to the source, rather
have two components. The first is the reverberant componemihan near the boundaries of the domain. Conditio® im-
contributed by the NMP zeros and expressed in terms of thplies that, as is to be expected physically, propagant behavior
group delayrg of (11) by ¢pr=075=0/2a. The second is is most easily observed if the detector is close to the source

B. Phase conditions
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so that the propagant wave amplitude is much greater thaR(|r,—r4|,w) with a spatial singularity at the point=r,

that of the reverberant field. The conditi@®l), however, together with a spatially smooth functiéi(r,,r,,w) contrib-
implies just the opposite behavior—that it becomes increasdted by the boundarigs.For simple geometriesQ can be
ingly difficult to observe propagant behavior in the closeexpressed in terms of image sources located outside the
vicinity of the source, in contradiction to physical expecta-problem domain. We then have

tions.

It is possible to modify the time-domain argument ad- Z1d11,12,@) =P(r,0) +Q(ry,r2,0), (23
duced to clarify(21) so as to bring these two results into wherer =|r,—r4|. All the poles ofZ;(w) in the complex
agreement. Suppose that the measurement is being mag@new={+jy are contained irQ, and both the positions
near the center of a large domain of dimensiondlityand  of the poles and the residues at them are unaltered. A little
that the measurement separatiois very much less than the consideration shows th& is just the infinite-domain propa-
length R characterizing the size of the domain. The signalgant functionyp of (13) and the smooth pa® the rever-
received at the detector then has the form shown in Flg. 3 berant functionyy of (16).

There are two significant differences from Figa)3 The first If we takek={()/c to be the real propagation number for
is that there is a time interval between detection of the prothe wave, therP(r,») has an implied factoe " which
pagant impulse and the beginning of the reverberant signaimeans that the phase Bf depends upon the real pdt of

The second is that the amplitude of the reverberant signal i@ ={2+ jy, but P is independent of the imaginary partin

now small relative to that of the propagant signal. If we both phase and amplitude. The magnitud€ofon the other
suppose that reflection from the boundaries of the domain iband, derives entirely from the poles of, and so decreases
specular, then the beginning of the reverberant signal corsteadily with distance away from the ling=j «. This means
sists of a pulse received from an image of the original sourcéhat, if |P|>|Q| on the real axis below the measurement
that is at a distance of ord&. The power in this reverberant frequency(), then|P|>|Q| everywhere in the lower half-
signal is therefore attenuated by a factofR)" ! relative  plane and there can be no zeroZg$= P+ Q below the real

to the propagant signal. If the absorption coefficigrif the  axis. What has happened in this circumstance is that the
medium is appreciable, then there is a further attenuation blpackground contributed by the propagant wave has shifted
a relative amoune ™~ 2”R~")_ This argument can be extended all the NMP zeros oZ, into the upper half-plane, so that no
to include the effects of diffuse reflection at the boundarieNMP zeros remain.

and boundary absorption without significant change. Because of the statistical nature of the reverberant field,
When now we come to determine the energy-weightedhe magnitude o@ on the real axis fluctuates about its mean
average delay time, it is no longep+ 7¢ but rather value |Q| in any small frequency range. The condition for

observing propagant behavior is therefore tfRit > |Q|,
with the inequality interpreted as meaning about a factor 2 or

If we require thafr ~p so that propagant behavior is ob- 3- From(13) and(16) this condition can be written
served, the result is essentially identical(1®), so that the r\M-1 ¢
anomaly is removed. a> 58_27(R_”<§) R’

One might ask why this problem did not appear in the
careful experiments of Tohyanea al” The reason appears to Which is identical with(19). If this inequality is only just
be that the experiments were designed to investigate SoméatiSﬁEd, then some of the former NMP zeros will have been
thing rather different. Their signal-processing approachmnoved to only just above the real axis and a few may remain
therefore involved, as a first step, “eliminating the pure de-in the lower half-plane, so that we expect the phase behavior
|ay part" from the beginning of the data record. Since thisto be somewhat erratic. This effect will be more pronounced
step involved removal of the directly propagated impulse adf the reverberant field is not diffuse but suffers from focused
well as the leading zerdS,we should expect to see only the echos or other irregularities.
reverberant signal and thus the group detgy If we setd=1 and assume/R<1, then the right-hand

This argument, however, does not explain why the initialside of(24) is simplified and increased in magnitude, so that
approach involving zero counting gives the regaft) rather ~ the condition so derived,
than (20), and resolution of this discrepancy is vital to the FAM-1 ¢
whole fabric of the theory. We recall that the res(2fl), a> ﬁ) 2R’
when derived in terms of poles and zeros of the transfer
function, depends crucially upon the distribution of zeros inshould ensure propagant behavior unless the reverberant field
the complex plane, and particularly upon the distribution ofis very far from being diffuse.

NMP zeros as given b§9). It is this aspect of the theory that
we should therefore reexamine.

The eigenfunctionsgy,(r) that describe the problem, as
in (1), are determined in form by the shape of the domain  The discussion in the previous section shows that, if the
and cannot generally be written down analytically. We canpropagation distance is small, then/P|>|Q| except close
however, always reexpress the transfer functg(w) of  to the pole line, so that the cloud of zeros must collapse
(1), which in other contexts is referred to as a Green’s functoward that line. Further, since the zeros were initially dis-
tion, in the form of a spherically symmetrical function tributed in pairs on either side of the pole line, aAdloes

r~7p+(r/IRM e "R 7 (22

(24)

(25

D. Distribution of zeros

319  J. Acoust. Soc. Am., Vol. 99, No. 1, January 1996 N. H. Fletcher and S. Thwaites: Reverberant environments 319



not depend upon the imaginary component of the frequencyther nondimensional quantities such@a®Q or o/} into
this collapse must be symmetrical. It is important to see howelations, but such a complication does not appear to be nec-
this collapse can be incorporated into the original discussioessary.
of the statistics of the distribution of zeros put forward by
Tohyama and Lyon. E. Origin of propagant phase

The reason that the criteriai25) differs from that ex-
pressed in(21) is presumably that there are subtle correla-
tions between the signs and magnitudes of the residues at

While the argument above establishes the conditions un-
[er which the contribution of reverberation to accumulated

poles ofZ,, in the simple expressiofl) when the ratio of phase is small compared With _that of propagation delay, it
the propagation distanceto the domain radiu® is suffi- does not make clear the origin of the propagant phase.

ciently small. While it is difficult to examine this problem Cléarly this must arise in some way from details of the dis-

from first principles, we can at least see what modificationmbunon of the zeros of the transfer function relative to the

needs to be made to the arguments adduced by Tohyama aRgles- We explore two possibilities, one of which can be
Lyon®® to derive the distribution functiort9) in order to  discarded. _ o

retrieve the situation. Such @t hocmodification does not ~ AS the size of the system or its damping is increased, the
violate any established features of the statistical theory, sincdiStribution of zeros of the transfer function condenses to-
we recall that only the asymptotic form ) has a theoreti- ward the pole line, this condensation being particularly

cal justification. rapid if the excitat?on and observation.points are sepa}rated
There are two possible consequences of the existence 8Y @ distance that is small compared with the system dimen-
correlations between the signs and magnitudes of the respions: as expressed (g7). The distribution of zeros is, how-
dues o0fZ,, for smallr. The first, which derives from corre- Vel a statistical quantity and we can envision the possibility
lations between the signs, is that the dengify of zeros ~thatthere is a small density of zeros lying at poinfsXje)
lying on the pole line may be greater than the random valud the complex frequency plane. Despite the condensation,
of gp/2 for small values of . If this increase has the form ~ ONn€ Of these zeros will remain of nonminimum phase, and
together the pair and the two poles that they fail to cancel
o 1 r\M will contribute to the accumulated phase. It is conceivable
92 =5 gp{z—tan}{ﬂ(ﬁ) ] (26)  that the propagant phase arises in this manner, the statistics
of these zeros at infinity being determined by the correlation
where u is a constant and/ is the dimensionality of the between residues associated with separation between excita-
domain, then the fraction of zeros lying off the pole line tion and observation points. This is not the explanation that
varies as tanhf(r/R)M] and we regain very nearly the form we favor, if only for the reason that, as discussed in Sec. Il
of (25 from the argument leading t¢21). For a one- above, it does not apply in the case of one-dimensional sys-
dimensional systenr=0, since all zeros lie on the pole line, tems.
while for systems in two or three dimensions we exgeto The second possibility is that the total distribution of
be of order unity. This suggests that=(M—1)u’, where  zeros is slightly stretched along the real frequency axis, rela-
w' is another constant, which would take care of this behavtive to the distribution of poles, by an amount just sufficient
ior automatically. to account for the propagant phase. We showed in Sec. Il that
A more likely alternative, and one that accords betterthis is what happens in one dimension, where we can find an
with our derivation of(25), is that the correlation between explicit closed expression for the transfer function, and it is
the magnitudes of the residues of, leads to a functional hatural to expect something similar in two- or three-

dependence of the shape parametar (9), of the form dimensional systems, even though we are unable to demon-
strate it in a general case for lack of a closed expression for
e=4 cothf[ w(r/R)M]. (27) the transfer function. It is clear, however, that special cases

such as a circular membrane excited at its center are one
This leads to a collapse of the cloud of zeros toward the polgimensional from a mathematical point of view and so
line whenr <R, and to results very similar t@6) for the  shoyld exhibit zero stretching, and it would be surprising if
density of NMP zeros. Such a functional form feris not  this did not occur for asymmetric excitation as well. This
ruled out by the argument Ie.ad”?g te), since only the aS-  explanation of the origin of the propagant contribution to the
ymptotic form of this expression is determined and the introygta) accumulated phase is therefore preferred, though it must
duction of e as a constant is quite arbitrary. Once again, Wepe admitted that it has not been demonstrated unequivocally.
expect thafu=(M—-1)u'.

The form of the functional dependences suggested ir|1
(26) and(27) should not be taken too seriously. In particular,
the hyperbolic tangent function has been introduced simply ~ While it is not the purpose of this paper to report an
as a convenient function that tends linearly to zero for smalkxtended experimental investigation, it is important to verify
values of its argument and approaches unity asymptoticallthat our conclusions are borne out by measurements. With
for large values of the argument. The precise form of thethis purpose in mind, we have measured the accumulated
behavior will almost certainly depend upon the shape of thephase of the transfer function for wave propagation on sev-
domain and the location of the excitation and observatioreral plate structures having different characteristics. The
points within it. There is also the possibility of introducing measurements were carried out using a Hewlett—Packard

Il. EXPERIMENTAL STUDY
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FIG. 4. Measurement setup for the experiments.
FIG. 5. Accumulated phase as a function of frequency for an aluminum
panel, measured at several different separations between source and detec-

model 3567A spectrum analyzer and pseudorandom excitd@r- Note the rapid rise and irregular behavior.
tion. The reference signal was derived from a force trans-
ducer on the exciter head, which was located part way alon§lMP zeros or perhaps to the analysis algorithm. At greater
a diagonal of the plate, and the response signal from a mirseparations the rate of increase of phase is much greater,
iature accelerometer, the distance of which from the excitathough this is not a monotonic function of separation for
tion point could be varied, approximately along the samedistances in excess of 40 cm. The rate of increase of phase
diagonal. The physical arrangement is shown in Fig. 4, thelecreases with increasing frequency.
plate to be measured being supported on blocks at its edges. The value of the damping coefficient deduced from re-
This system can only approximate the true phase behaviorerberation measurements on the sheet4s36 s * when
because its resolution becomes less than the mode spacingtla¢ signal is low-pass filtered at 2 kHz, ane-56 s * when
high frequencies. It is, however, representative of practicait is high-pass filtered at 10 kHz. Settidd=2 in (24) and
measurement systems. noting thatc~2.20*2? m s for this plate, which is about

For each structure, an estimate of the decay constant 300 m s at 3 kHz, we expect to observe propagant behav-
was made by observing the decay of an impulsive excitationior only forr less than about 5 cm. This is in good agreement
Two different methods of giving an adequately sharp impulsewith the results displayed in Fig. 5. The phase curve feb
were used, and both gave essentially the same results. In tkken shows very nearly propagant phase behavior, except for a
first, the plate was tapped with a thin strip of steel, while infew jumps of 2r that can be attributed to residual NMP
the second a steel ball 8 mm in diameter was dropped onteeros, while the curves for higher separations have high rates
the plate from a height of about 15 cm and caught on thef phase increase that can be attributed to reverberant behav-
rebound. In each case the decay of the vibration was raer. The difference in slope between the reverberant curves at
corded using a miniature accelerometer connected to a digiew and high frequencies is about a factor 2, which is what
tal oscilloscope. The value af was taken as the reciprocal we expect from the measured frequency variatiorv.oT he
of the time required for the amplitude to decay by a faetor rather low modal density associated with bending waves
Since the shaker does not have zero mechanical impedancegantributes to the irregularity shown in the phase plots in the
check was made by repeating the measurement with thiégure.
shaker attached to the plate. This check confirmed that the An alternative analysis of this data is given in Fig. 6, in
influence of the shaker on the decay rate was negligible. which the accumulated phase at a given frequency is plotted

The first structure tested was a uniform aluminum sheeas a function of separation between excitation and measure-
about 900 mnx700 mm and 3 mm in thickness. This sheetment points. The sharp rise and the reverberant phase pla-
had low losses, and there was no absorbing material at iteau, first discussed by Lydnare both clear. The fact that
boundaries apart from simple supports. The frequency rangde reverberant phase plateau rises less than linearly with
covered was such that waves propagated essentially as berftequency in this range is again an expression of the fact that
ing modes throughout, the shortest wavelength being about @amping increases with frequency. The quantitative agree-
cm at a frequency of 6 kHz. The measurements of phasment between theory and experiment for the reverberant
behavior at various distances from the excitation pointphase plateau values, obtained by integratingrIo®er the
showed rather irregular behavior, as illustrated in Fig. 5. Fofrequency range concerned, is not good, however—the calcu-
separations between excitation and measurement points lelsged reverberant phase is, for each frequency, two to three
than about 5 cm, the rate of rise of phase with frequency isimes the measured phase.
comparable with that expected for bending-wave propaga- The solution to this apparent anomaly lies in the physi-
tion at the separation studied, except for some apparentlgal properties of the system. The aluminum sheet is suffi-
random jumps of Z which may be due either to isolated ciently thin that wave propagation is by bending waves over
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FIG. 6. Accumulateq phase as a function of distance between_ source anflg. 7. Accumulated phase as a function of frequency for a composite

detector for an aluminum panel, measured at several frequencies. The plgane| measured at two different separations between source and detector.

teau is the reverberant phase in each case. The slope of the curve is the propagant phase delay, with the curvature at
low frequencies showing bending wave dispersion.

the whole frequency range studied and, as discussed before,

the modal densitgp((2) for this case is constant, the actual the panel. Close proximity of the measuring point to one of
value being §/47) (ph/K)"? whereSis the plate ared) its  the free edges did not cause any significant change in behav-
thicknessp its material density, an¥ its bending stiffness. jor.
The modal overlap, defined by the quantity=agp, is The results of two sets of measurements, for propagation
therefore only about 0.45 so that it is not legitimate to use thejistances of 10 and 20 cm, respectively, are shown in Fig. 7.
asymptotic formm/\/e? of the probability distribution of The simple propagant phase behavior is clearly evident, the
zeros(9). Retaining the full form(9) then leads not to the only complication being a jump of72 of the upper curve,
expression(11) for the group delayrg but rather to the which may either be instrumental or else reflect the presence
smaller quantity of an isolated NMP zero. The slight curvature of the plot at
7i= 16H[1— (2/m)tan (2H/m)], (29) !ow frequencies_ indicates the_ presence Qf a dispersive bend-
ing component in the otherwise predominantly shear waves.
as has been pointed out by Tohyaetal> For the particular It is not clear whether or not there is some contribution from
aluminum plate used in our experimegi(2)~0.01 and NMP zeros at very low frequencies or whether the apparent
a~50 over the range of measurement, so #Hat0.5 and  offset of 2r is instrumental in origin.
7 ~ 0.47¢. This leads to a factor 0.4 in the expected rever-  From the slope of the phase curves, the wave speed in
berant phase plateau and adequately explains our experimethre plate is about 600 i $andR~0.5 m, so that fron{24)
tal results. the condition that propagant behavior be observed for a
It is informative to discuss the plots of Fig. 6 against thepropagation distance of 20 cm is that-300 s 1. Measure-
background of our tentative resolution of the conflict be-
tween Eqgs(24) and(21) as set out in25) and(26). For this

aluminum sheet, the value of the equivalent radtusn an 241
area basis is 45 cm and the dimensionalify=2. If we :
assume thaju~1.5 in (26), then we expect the measured 20% 4
phase to rise steadily with distanceup to aboutr~40 cm I 20 em /
before saturating at the reverberant phase plateau appropriate .
to the measurement frequency. This is just what is observed I /
in Fig. 6, lending confirmation to our proposals. 3 »
The next structure investigated was a uniform plane £ '~ / toem | =T
honeycomb panel with carbon fibre reinforced composite en- I e
closing sheets, actually part of an aircraft structure. The 8m =
panel thickness was about 10 mm and the piece studied was
about 1-m square. This panel was thick enough that wave 4n
propagation was essentially in the form of shear waves above
about 5 kHz, but below this frequency the waves had some o . . e
bending component. The internal damping was very high 15 2 %
Frequency (kHz)

because of the properties of the honeycomb core. As a result,

the phgse characteristic showed essentially simple propagafk. g, Accumulated phase as a function of frequency for a table top,
behavior for source and detector located almost anywhere afeasured at two different differences between source and detector.
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ments of the value ofr were a little difficult because of the been led to extend the conclusions of Lyeinal. concerning
high decay rate of the signal and some anomalies in behathe distribution of zeros of the transfer function in the com-
ior. The estimated value of is greater than 500°$ and  plex frequency plane, as set out in E&6) or (27). This
probably close to 200078, which adequately satisfies this extension, although tentative in form, removes the anomalies
condition and indeed allows propagant behavior to be obthat we identified in the original treatment and allows its
served over essentially the whole plate. extension to a wider range of physical situations.

Finally, to show the generality of the behavior, we car- The robustness of propagant phase behavior in platelike
ried out a similar set of measurements on a space about 1 structures such as honeycomb composite panels, and even in
across cleared on a wooden laboratory bench of unknowthick panels of rather lower damping, confirms the basis
structure and overall dimensions about Xfin5 m. The au- upon which nondestructive testing procedures involving
dible response of the bench to a sharp blow indicated that ineasurements of propagant phase have been developed.
was highly damped, and the measured value-sfL000 s*
confirms this. Typical records for this case, at propagatiolARCKNOWLEDGMENT
distances of 10 and 20 cm, are shown in Fig. 8. The results
show simple nondispersive shear-wave propagation over &ho
wide frequency range, with a degree of irregularity which is
probably due to the more complicated structure and prope
ties of the bench.

The authors are greatly indebted to one of the referees
pointed out a serious error in the initial version of this
aper. Correction of this error has led to a reformulation and

extension of our major conclusions.
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