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A BSTRA CT 

The basic mechanisms of sound generation in wind-excited musical 
instruments of the reed-woodwind, brass and flute families are outlined. A 
survey is then given of the nonlinear effects that determine major features 
of sound production in these instruments. Particular attention is given to 
harmonic generation and loudness level, and both steady-state and transient 
domains are considered. The theory is presented in both the frequency and 
time domains, and the harmonic-balance method is also outlined. 

INTRODUCTION 

Musical instrument makers have a practical tradition which defines the 
structural features of their instruments in a completely adequate way so that 
they have good intonation and tone quality, though there are subtle 
differences between those produced by different craftsmen, t In the case of 
the flute, the present design is based upon acoustical principles as applied by 
Boehm nearly 150 years ago, and the same could probably be said of Sax's 
development of the saxophone, but the present form of nearly all other wind 
instruments is more a product of tradition and experience than of scientific 
design. Scientific studies of wind instruments, which have been carried out 
since the time of Helmholtz and Rayleigh a century ago, have therefore been 

* This is an extended version of an invited lecture given at the Raman Centenary Symposium 
on Acoustics, held in Bangalore, India, in October 1988. 
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largely directed towards understanding the physics of traditional instru- 
ments, and in effecting minor improvements to them, rather than towards 
designing new instruments with particular desired properties. 

Most of these studies have been concerned with the linear acoustic 
properties of musical instruments, since these form an adequate basis on 
which to calculate important  things such as the placing of tone holes and the 
shaping of the bore to give harmonically related resonances. Extended 
bibliographies, in which most of the papers refer to the linear theory, are 
given in the collection of Benchmark Papers in Acoustics edited by Kent 2 
and in a recent review by Fletcher. 3 An excellent account of the linear theory 
of woodwind instruments has been given by Nederveen. 4 Without 
depreciating in any way the importance of these linear studies, the present 
paper is concerned almost entirely with nonlinear aspects of wind 
instrument behaviour, a field which was largely initiated by Benade 5'6 and 
which has been receiving greatly increased attention in recent years. 

In its essentials, a musical wind instrument consists of a very nearly 
linearly-behaved resonator-- the  air column in the horn of the instrument 
with its associated finger holes or valves---closely coupled to a nonlinear 
acoustic generator-- the reed, lips or air jet produced by the player. To be 
complete we must include the player as well, as shown in Fig. 1, but rather 
surprisingly the acoustic output, which is the whole reason for the exercise, 
appears as only a small perturbation which consumes only about 1% of the 
input pneumatic energy. Complex feedback loops, some of them involving 
the player, are an essential feature of the complete system and largely 
determine its performance. 

In most of the discussion below we will concern ourselves with the internal 
acoustics of the instrument, since radiation is such a small component  of the 
energy balance. The transfer function from internal to external spectrum 
and waveform involves an emphasis on high frequencies, to the extent of 
6 dB/octave, up to the radiation cut-off frequency, above which the internal 
and external spectra are the same. This behaviour simply reflects the value of 
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Fig. 1. System diagram for a musical wind instrument, showing control paths and feedback 
paths. The player acts by controlling parameters of the system, which is approximately linear 

except for the generator, which is highly nonlinear. 
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TABLE I 
Importance of Various Mechanisms 
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Resonator Generator Vocal tract 
(linear) (linear) 

Linear Nonlinear 

Pitch of note S S W W 
Amplitude W S S W 
Spectrum W W S W 
Transients W W W W 

S = strong influence: W = weak influence. 

the resistive component  of the radiation impedance at the open horn or open 
holes of the instrument, the cut-off frequency being determined by the size of 
these openings and, to some extent, their distribution and relation to the size 
of the instrument bore. 7 

Table I analyses the behaviour of the system in terms of  the relative 
influence of  its various components, with the role of the generator being 
separated into linear and nonlinear aspects. It is clear that the loudness and 
tone quality of the acoustic output  are largely controlled by nonlinear 
effects, and these quantities are second in musical importance only to the 
pitch of the note being played. It is the purpose of this paper to examine, in a 
fairly general way, the particular aspects of nonlinearity that are important 
in this context and to show how the acoustic behaviour to be expected from a 
particular type of instrument can be calculated. 

G E N E R A L  T H E O R E T I C A L  CONSIDERATIONS 

The essence of a linear theory in any domain of physics is that all the 
conclusions scale linearly with amplitude, and contributions from different 
sources are simply additive. In our present discussion this means that a linear 
theory can give us no information about the loudness of the sound 
produced, about its harmonic development, or indeed about whether or not 
the upper partials of  the sound are harmonics of  the fundamental. A linear 
theory is also unable to deal with most of  the time-varying aspects of the 
behaviour of the instrument. Of course some of these aspects of the problem 
can be treated in an adhoc way, for example by assuming the overtones to be 
harmonics or by calculating the maximum pneumatic power available from 
the source andse t t ing  it equal to the sum of the acoustic output  and the 
internal losses, but such approaches are not very satisfactory. A proper 
nonlinear theory answers all these questions automatically. 
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Because essentially all the nonlinearity in the wind-instrument system is 
concentrated in the acoustic generator and the horn resonator-radiator is 
very nearly linear, it makes sense to separate these two parts of the system 
conceptually and then to join them together by appropriate continuity 
conditions on the acoustic pressures and flows involved. Such a separation 
allows different mathematical treatments to be used for the two sections of 
the instrument, with consequent simplifications. In all cases the feedback 
loops involving the player act rather slowly in comparison with those 
internal to the instrument, and it is therefore adequate to regard them as 
supplying slowly-varying or even static external system parameters. When 
the nonlinear physics of the instrument is understood, the performance 
technique of the player can usefully be studied. 

The analysis of a physical system can be approached in many ways, but for 
our present purposes the two most useful representations are in the time 
domain and the frequency domain respectively. Transformation from one 
domain to the other is simple in the case of a linear system, since they are 
related by a Fourier transformation. No such simple relationship exists in 
the case of a nonlinear system. We therefore have several options available 
for developing the theory, the essential features of which are summarised 
below. 

Time-domain approach 

The two components into which we have divided our musical instrument 
(and indeed any sub-components we might like to consider) are all "two-port 
devices' in the sense that their behaviour is specified as a relation between the 
acoustic quantities (pressure and flow) at the output  port and similar 
acoustic quantities at the input port. The acoustic generator in the 
instrument can be characterised as being very small compared with the 
acoustic wavelengths involved, if necessary by assigning components such as 
mouthpiece cups to the resonator part of  the instrument. This makes it 
straightforward to describe the behaviour by a set of nonlinear differential 
equations, all of which are 'local' in the sense that all the variables apply to 
essentially the one location with, at most, subscripts to indicate whether they 
are input or output  quantities. A time-domain treatment of the generator is 
thus relatively simple once all the internal physical variables have been 
identified. 

The resonator, in contrast, is an extended device with dimensions 
comparable  with, or even considerably greater than, the acoustic 
wavelengths involved. Its behaviour must therefore be described by a set of 
partial differential equations, one of  which will be the wave equation for 
sound propagation in the instrument horn. Treatment of such a system in 
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the time domain involves specifying its response to a flow impulse applied to 
the 'throat' end which is to be connected to the generator. This impulse 
response is related by a Fourier transform to the input impedance in the 
frequency domain, which is generally a more familiar quantity. The impulse 
response generally has a long extension in time, since the condition that the 
flow into the throat after the impulse should be zero implies a rigid 
termination at that end, so that the pulse is reflected repeatedly between this 
termination and the open mouth of the horn, losing only a little energy by 
radiation and rather more by viscous losses to the walls of the horn on each 
transit. 

When treatments of the two parts of the system have been set up in the 
time domain, it is relatively simple to connect them together by requiring 
consistency of acoustic quantities at the interface. This generally results in an 
integral equation s which can be solved numerically to give the flow 
waveform and pressure waveform at the player's mouth, the junction 
between the generator and the resonator, or the open mouth of the horn. The 
inclusion of quantities at open finger holes involves splitting the horn into 
sections placed end-to-end, which clearly complicates the computation. 
These final acoustic quantities are then readily converted to a calculated 
acoustic output. 

One of the nice features of this approach is that it leads automatically to a 
proper treatment of transients, and particularly of the initial transient, since 
the integration of the equations requires specification of the way in which 
blowing pressure is applied and then follows the system evolution. This 
allows for the possibility of different stable solutions depending upon the 
initiating conditions, a feature of wind-instrument behaviour in certain 
playing ranges. 

Perhaps even more significantly, the time-domain approach makes no 
assumptions about the nature of the upper partials of the sound. Their 
amplitudes and frequencies are determined automatically from the 
computed waveforms. It turns out, indeed, that these upper partials are 
generally locked into harmonic relationship with the fundamental, since 
musical requirements demand this of a successful instrument design, but 
inharmonic relations can arise for certain fingerings and playing techniques. 

Frequency-domain approach 

The other extreme approach is to treat both the resonator and the generator 
in the frequency domain. The resonator, through its input impedance curve, 
is characterised as possessing an infinite number of normal modes, each of 
which can be excited by the acoustic output of the generator. Because the 
resonator is linear, all these modes can coexist independently and each 
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makes its own contribution to the radiated sound. The natural frequencies 
of the modes are generally inharmonically related, though useful musical 
instruments usually have several modes in approximately harmonic 
relationship for most fingering configurations. 

The generator response, being nonlinear, cannot however be calculated by 
summing the response to each of the resonator modes, induced by the mode 
pressure at the generator port. Rather, the generator responds to the sum of 
the pressures or flows associated with the individual modes, and its response 
is nonlinear. This response therefore contains multiple sums and differences 
of the resonator mode frequencies, each with an associated phase shift, 
which act as new driving forces for the resonator modes. The fact that phase 
shifts are involved leads to frequency shifts in the resonator modes, while 
cross terms between different mode frequencies ensure their interaction. The 
result is often a frequency and phase locking of the individual components 
to produce a fully harmonic spectrum, though other outcomes are possible. 
The detailed evolution of the oscillation spectrum is found by numerical 
integration of  the individual mode equations, typically using the method of 
slowly-varying parameters. 9 ~° 

This approach to the problem similarly gives a good treatment of  
transients, particularly the initial transient. There is usually some sort of 
acoustic impulse associated with the beginning of a note, so that all the 
resonator modes are initially excited to their natural frequencies. As the 
amplitudes grow, however, so do the interactions, and the final, usually 
harmonic, sound results. While conceptually simple, this approach suffers 
the disadvantage that there is a great amount  of algebraic bookkeeping to be 
done to keep track of the multitude of frequency components generated by 
even a small number of modes inserted into the nonlinear generator 
characteristic. 

Harmonic balance 

The method of harmonic balance, much used in electronic engineering, 
treats only the steady state and makes the assumption that the upper partials 
are all harmonics, so that the waveforms are all exactly repetitive. From this 
starting point it is then possible to treat the generator in the time domain and 
the resonator in the frequency domain, linking them together by a Fourier 
transform executed numerically. In this way each part of the system is 
treated in its most natural and easily accessible mode, and the solution is 
approached by iteration from a reasonably assumed starting po in tmfor  
example a single sinusoid at the natural frequency of the most prominent 
pipe resonance. The disadvantages are that no treatment of transients is 
possible, and inharmonic behaviour is explicitly excluded from discussion. 
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Within its domain of applicability, however, and using a Fast Fourier 
Transform (FFT) algorithm, the method of harmonic balance provides a 
straightforward and rapid computation scheme. On a more qualitative level, 
the harmonic-balance approach often provides useful insight into the 
harmonic-generation process in a particular instrument, without the 
necessity of carrrying out a complete analysis. 

In what follows we shall look at the basic physics of sound production in 
representative types of wind instruments and show how each of these 
approaches can be applied to gain insight into their acoustical behaviour. 
Application to a specific instrument will also make more realistic the 
formalism of the various mathematical approaches. 

REED GENERATORS 

Linear theory 

Pressure-driven reed generators, such as those found in woodwind 
instruments of the clarinet, saxophone, oboe and bassoon families, are 
perhaps the simplest of all to analyse. The clarinet has received most 
attention ** because its reed geometry is particularly simple and easily 
reproducible, which is less true of double reeds, and because the nearly 
cylindrical form of the instrument bore simplifies analysis. Let us first 
outline the linear theory as a background. 

Figure 2 shows the essentials of a clarinet-like reed generator. A thin 
flexible cane reed is clamped against a slightly curved window in a 
mouthpiece in such a way as to leave a narrow opening through which the air 
can pass. The player's lips seal the mouthpiece and reed and the blowing 
pressure Po in the player's mouth tends to force the reed closed against the 
surface or lay of the mouthpiece. The acoustic pressure p inside the 
mouthpiece, conversely, tends to force the reed open. The double reed 
generator of an oboe or bassoon operates similarly, but the two leaves of the 
reed close against each other rather than against a rigid mouthpiece. The 

Fig. 2. 

i 
I 

The acoustic generator in a clarinet or saxophone consists of a flat cane reed, 
clamped against a slightly curved window in a rigid mouthpiece. 
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reed itself is essentially a tapered elastic plate and can be excited to vibrate in 
one of its normal modes. In all ordinary playing, only the lowest cantilever 
mode is excited, with the reed tip free and its base clamped against the 
mouthpiece by the force of the player's lips. The natural frequency of this 
mode is ordinarily much higher than the frequency of the fundamental of the 
note being played. It is this feature which makes the first-order analysis 
particularly simple, for the displacement of the reed is essentially 
proportional to the difference in the pressures on its two sides and there is 
very little phase shift. 

Such a pressure-controlled reed valve will clearly operate most efficiently 
when the resonator to which it is coupled produces a large acoustic pressure 
to influence it. Since the reed responds equally at all frequencies well below 
its resonance, this implies that the operating frequency will be very close to a 
maximum in the input impedance of the resonator. For a cylindrical 
resonator, as in the clarinet, this implies a frequency for which the resonator 
length is )~/4, 3,;./4, 5)~/4 . . . .  where 2 is the associated sound wavelength in air, 
giving a set of odd-harmonic modes for the instrument. For a nearly 
complete conical resonator, as in the oboe, bassoon or saxophone, the 
impedance maxima occur for resonator lengths 2)./4, 42/4, 62/4 . . . .  giving a 
complete harmonic mode series based upon a fundamental twice the 
frequency of that for a cylindrical instrument of the same physical length. 

Now let us become a little more quantitative. I fx  measures the opening at 
the reed tip, then the volume flow U from the mouth  into the instrument 
through the reed is essentially 

U ~ ~ x ( p  o - p)1/2 ~ flEXo _ s (po  - P)](Po _ p ) l / , .  (1) 

where/3 is a constant proportional to the width of the reed and detailed 
geometry of the mouthpiece window, Xo is the equilibrium opening when 
Po = P  = 0, and s is the elastic compliance of  the reed for cantilever deflection 
under a pressure difference. All these quantities can be fixed in magnitude 
and refinements added to account for things such as the curvature of the lay 
of  the mouthpiece, 1 ~ which slightly changes the value of the exponents in (1), 
but this need not concern us here. The important  thing is the general shape of 
the flow curve, as shown in Fig. 3. The flow first increases as the pressure 
difference is increased, goes through a maximum at the point A, and then 
decreases to zero at C where the reed is completely closed. If the curvature of 
the mouthpiece lay is take into account, the pinch-off at C is not as sharp as is 
shown in the figure, and indeed the curve may have a tail towards higher 
values ofpo - p  rather than a decisive cut-off. We set this refinement aside for 
the present. The acoustic conductance of the generator as seen from inside 
the instrument is just the slope of the flow curve, and so is negative in the 
region AC. If the blowing pressurepo is adjusted to bring the operating point 
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Fig. 3. The steady volume flow U through a reed generator is controlled by the difference 
between the blowing pressure po and the pressure p in the instrument mouthpiece. The normal 
operating point is close to O. The broken curve shows the form of the characteristic when the 

player adjusts the lip tension for soft playing. 

close to O in the middle of the negative-resistance region, then playing 
conditions will be optimal and the generator will feed energy into the 
vibrational modes of the air column of the pipe resonator. 

The broken curve in Fig. 3 shows the effect of an increase in the player's lip 
pressure, which moves the static equilibrium position of the reed closer to 
the mouthpiece and so reduces Xo, and probably s as well for a curved 
mouthpiece. The slope of the curve near the operating point is clearly 
reduced, so that the reed is a less efficient acoustic generator, and at the same 
time the total possible excursion in pressure and flow is also reduced. This 
configuration corresponds to playing at a lower loudness level than that 
given by the main curve. 

When we take the resonance frequency of the reed into account, the 
situation is a little more complex ~ 2, L3 and the reed opening x is described by 
an equation of the form 

d2x 2k dx + co2( x _ Xo) = A ( p  --Po) (2) 
dt - - ~ +  dt 

where m is the effective mass of the moving part of the reed, A is its area, and 
k and co r are respectively the damping constant and resonance frequency of 
the reed. To be complete we must add to the right-hand side of this equation 
a term representing the aerodynamic Bernoulli force on the reed, 
proportional to (U/x) 2, while the flow equation must be modified by adding a 
term describing the inertia of the air in the reed passage, proportional to 
dU/dt, and another term for the flow associated with the physical 
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displacement of the reed surface, proportional to A dx/dt. None of these 
further refinements makes a significant difference to the general behaviour 
and, in the interests of  simplicity, we shall not write them down explicitly here. 

When we include the effects of  reed resonance, the acoustic conductance 
for a blowing pressure in the region AC of  Fig. 3 has the form shown in 
Fig. 4. It is still negative at all frequencies below the reed resonance, but is 
positive and therefore dissipative above. Just below the resonance there is a 
maximum in the negative conductance, which is actually used as the 
operating point for organ reed pipes, but in woodwind instruments this 
resonance lies well above the fundamental  of  the note being played. There is 
some evidence, however, that players tune the reed resonance bv changing 
the tension of the lips so that it coincides with a harmonic of  the note being 
played, thus stabilising its production and emphasising the harmonic 
concerned. ~ 3 

A related performance technique involves tuning the resonances of  the 
vocal tract, by altering mouth shape and tongue position, to bring a vocal- 
tract impedance maximum close to the frequency being played. Since the 
flow out of  the mouth  is the same as that into the instrument, and the 
pressures p and Po enter (1) only in the combination ( p - p o ) ,  the vocal tract 
impedance is effectively in series with the impedance of the instrument and 
so can modify its response. The vocal tract has a considerably' smaller 
acoustic impedance than does the instrument air column, and its resonances 
are broader because of  internal damping, so that the effect is not large. Its 
properties may, however, be crucial for playing some notes in the high 
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Fig. 4. The small-signal acoustic conductance (real part of the admittance) as a function of 
frequency co for a clarinet-type reed with resonance frequency co,. The reed acts as an acoustic 

generator only for frequencies below its resonance. 
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register, for which the desired impedance peak is of scarcely adequate 
magnitude and the air column may have several lower-frequency resonances 
with which the reed can potentially interact. 

Nonlinearity--harmonic balance 

While the conductance characteristic shown in Fig. 3 is linear if the pressure 
p makes only small excursions around the operating point O, this is clearly 
no longer true ifp becomes an appreciable fraction ofpo. We can investigate 
the effect of this nonlinearity semi-quantitatively without much difficulty. 
With the values of the various parameters in (1) fixed, we assume a small 
sinusoidal variation in pressure in the mouthpiece of the instrument at a 
frequency coincident with that of the first impedance maximum of the 
instrument tube, which we take to be cylindrical as in a clarinet. From eqn (1) 
this gives a flow U(t) through the reed which we can readily calculate. This 
flow is periodic and so has a set of harmonic overtones which we may take as 
being coincident in frequency with the impedance maxima and minima of  
the pipe-- the odd harmonics lying on the maxima and the even harmonics on 
the minima. To a reasonable approximation, the impedance at the maxima 
can be taken as a constant large resistive quantity R, and that at the minima 
to be zero. The odd harmonics constitute the symmetric part U+ of the flow 
waveform and the even harmonics the antisymmetric part U_, so that the 
pressure generated in the instrument tube by the flow is essentially RU+, 
which can be easily evaluated from the calculated waveform by averaging, 
with a sign change, flows at phases 4' and ~ + ~z. This pressure is now taken as 
the starting point for a new calculation of the flow, and the process is 
repeated. It converges after a few iterations if we make the further refinement 
of introducing some waveform smoothing to represent the facts that the 
higher pipe resonances are greatly reduced in amplitude and that the reed 
responds only below its resonance frequency. The results of such a 
calculation for the clarinet flow waveform, or equivalently the pressure 
waveform in the mouthpiece, are shown in Fig. 5, for three different assumed 
values of the parameter/~ in (1), corresponding to soft, medium and very 
loud playing. 

We see immediately that the nonlinearity limits the maximum excursion 
of the flow to the difference between the flows at points A and C in Fig. 3, and 
thus limits the maximum pressure amplitude in the instrument. At lower 
playing levels, the curvature of the flow characteristic similarly limits the 
amplitude. The calculated waveform is, of course, exactly symmetrical 
because of our removal of all even harmonics, a feature which is not exactly 
preserved in real instruments because of misalignment of the impedance 
maxima. More importantly, we note that the complexity of the waveform, 
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Fig. 5. Calculated flow waveforms generated by a clarinet-type reed coupled to an ideal 
cylindrical resonator, for three different levels of playing loudness, increasing from the top. 

Pressure waveforms in the mouthpiece are similar. 

and thus the harmonic richness of the tone, increases with increasing playing 
level--a feature of  nearly all musical instruments. It is not quite as simple to 
calculate the waveform of the radiated sound, because there is a change in 
sign in harmonics 3, 7, 11 . . . .  relative to 1, 5, 9 . . . .  by the time we reach the 
open mouth of  the air column, and then a radiation characteristic which 
essentially amounts  to a differentiation of the shifted wave. The radiated 
spectrum, however, ignores the phase shifts and simply adds a rising 
emphasis of 6 riB/octave up to the cut-off frequency, as noted before. 

An approximate treatment of this kind can also be applied to conical 
woodwinds, such as the oboe or saxophone, by using the complete flow 
waveform rather than just its symmetric part. While this is simple in 
principle, the result depends to a much greater extent upon details of the 
pinch-off behaviour of the reed near point C in Fig. 3 than in the case we 
have just discussed. Indeed for the simple flow characteristic of  eqn (1) 
the reed is found to close completely once in each cycle if the sound is to be 
maintained, giving a waveform with sharp corners and a much higher 
harmonic development than for the clarinet. While such behaviour is to 
some extent found in the oboe, it is clear--as the oboist knows from 
experience--that details of reed geometry can cause variations between 
unplayability or raucous sounds and satisfying tonal beauty. 

To explore these phenomena in greater detail we require the more formal 
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techniques of the method of harmonic balance. The principle of this 
approach has been outlined and applied to the clarinet by Schumacher.t5 
We assume that the pressure in the mouthpiece is periodic with a period set 
for convenience equal to unity, so that 

p(t) = pk e'-~kr 13) 

k = - ~  

The Fourier components Pk of the mouthpiece pressure are related to those 
of the flow U(t) by 

p~ = Zkb  ~ (4) 

where Z k is the input impedance ofthe resonator tube at frequency k and U~ 
is given by 

U(p,x)  e -  "~ik' dt  (5) 

and U(p,x)  is given by (1) and (2). Substituting (5) into (3) gives the integral 
equation 

p(t) = [-' K(t - t 'jU(p, x) dr' (6) 
J0 

where the kernel K(t) is given by 

K(t)= ) ,  Zk ez'~ik~ (7) 

Schumacher has shown how this equation can be solved by an iteration 
method. 

As we remarked in the introduction, the method of harmonic balance is 
essentially straightforward in principle, but gives results only for steady- 
state oscillation. To examine the approach to the steady state, or in other 
words the initial transient, we must use other approaches. 

Nonlinear theory in the frequency domain 

First let us look at what we characterised as the frequency-domain 
approach. The behaviour of the linear air column resonator can be expressed 
in terms of its pressure eigenfunctions (or normal modes, or standing waves), 
which we write in the form tp,(y,t) where v is a coordinate measuring 
distance along the air column from the reed at v = 0. Thfs assumes that the 
modes are derived from plane waves and have no variation across the bore--  
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a reasonable approximation in most cases. To a good approximation 
~ / # . v =  0 at l' = 0, but we can modify this boundary condition to allow for 
the influence of the vocal tract and the reed compliance. We normalise the 
wave functions so that the.,, all have unit square integrals as usual. The 
natural frequency of the nth mode is taken to be ~,}.. A little consideration 
then shows that the equation describing the nth mode when excited by a 
volume flow U ( t ) i n j e c t e d  at v=  0 is 

~2ur," ~..~. , (2u? ° ~ U . 
= v + 2k - c- . = ~z. - -~ O( v - 0) (8) 
c t -  ~t  ( 'v  2 " 

where c is the velocity of  sound and 

~L. = ~,~(0) (9) 

with ~,. being the spatial part of  the normalised eigenfunction u-F., S the 
cross-sectional area of the resonator and p the density of  air. If we add the 
pressure contributions of  all modes at y = 0 when the exciting flow U(t) has a 
simple sinusoidal form at a given frequency, then we obtain the input 
impedance function for the instrument. Figure 6 shows that, for a typical 
woodwind instrument in the low register, the measured resonance 
frequencies co. are in approximate harmonic (integral) relation, but that this 
is by no means true in the upper registers. ~~ 

Putting this aside, if now we write 

• . ( y ,  t) = z . ( t ) ~ . ( y )  = a . ( t )  sin (co.t + qS.)~,.()') (10) 

where a.  and ~b. vary only slowly with time. then (8) can be written in the 
form 

d- - .  dU  +_co2 =~L. 2 k  dz"  (11) 
d t  2 d t  d t  

We note that U depends on the total pressure acting on the reed, by (1) and 
(2), and thus on the sum of  the contributions of  all the modes z.. This set of  
equations (for all values of n) is in the right form for t reatment by the method 
of slowly varying parameters, 9'~° and leads to the results 

da. ~l. ('2~ dU 
- -  ~ - -  I - - c o s O .  d O . - k a .  (12) 
dt 2rcco. J0 dt 

d~----2 ~ /~" sin O. dO. (13) 
dt 2~za.co. 

where we have written for convenience 

0. = co.t + ~,  (14) 
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Fig. 6. Measured input impedance curves for (a) a low note fingering, E 3, and (b) a high note 
fingering, E6, on a clarinet. In each case the impedance peak upon which the note is based is 
shown with an arrow, and the frequencies of the harmonics of that note are indicated along 
the logarithmic frequency scale. For a low note, the impedance peaks are in good agreement 
with the odd harmonics of the note being played, while for a high note this is not so, and the 

basic peak may not be the most prominent one in the curve (after Backust'~). 

The integrals in (12) and (13) are intended to average out all but the slowly 
varying terms and, in keeping with this intent, we omit any residual high 
frequencies. In the case of the high frequency modes, there may be several 
driving frequencies included in the integrals, with the result that the 
amplitudes of these upper partial s may exhibit beat phenomena. We return 
to this later. 

There are now two ways to proceed with the solution. If the playing 
amplitude is small, then the nonlinearity in U(p) can be adequately 
represented by a power-series expansion to a few terms, the integrals in (12) 
and (13) can be evaluated explicitly, and we can integrate these two 
equations to find a.(t) and q~,(t) in terms of their initial values. These initial 
values are generally particular amplitudes of the free normal modes at their 
undisturbed frequencies which have been excited by the generally impulsive 
initial application of air pressure. If the amplitude is so large that 
inconveniently many terms have to be used, then the integrals can be 
evaluated numerically at each step. In either case we arrive at a solution 
which gives the waveform for the internal pressure and volume flow in the 
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instrument, including both steady-state and transient phases. This method 
has not been used to examine transients in clarinet-like systems, but the 
approach is essentially the same as that used for organ pipes by Fletcher. L6 

In the process of this solution we find a very important effect of the 
nonlinearity. The air column mode frequencies co, are not ever in exact 
harmonic relation, and may be quite far from this, as illustrated in Fig. 6. 
The cross-terms contributed by the quadratic and cubic terms in the 
nonlinearity, however, effectively couple the modes together so that they 
usually lock into precise integral harmonic ratios, t 7 This is possible because 
the actual sounding frequency of mode n is not co. but rather 

co(n) = co, + d(b, dt (15) 

It is this circumstance which gives to ~vind instruments their exactly 
repetitive harmonic waveforms and hence their usefulness for ordinary 
musical performance. It is only in the case of air column resonances that are 
very far from integral relationship that this coupling breaks down, giving the 
peculiar 'multiphonic'  tones now being exploited by contemporary 
composers. 

Even without proceeding to an explicit solution, we can examine some 
aspects of the behaviour from the general form of eqns (12) and (13). For 
example (12) determines the steady state amplitude when the left-hand side 
vanishes and the driving term, represented by the integral on the right-hand 
side, is equal to the damping term ka. Similarly the steady-state frequency 
shift away from the mode frequency is given by the integral on the right of 
(13). Because of the complementary nature of the integrals, involving 
respectively a sine and a cosine term with argument 0, an increase in one 
involves a decrease in the other. This is simply the resonance phenomenon 
for the pipe modes driven by the harmonics of the generator frequency. The 
lower modes naturally lock onto whichever harmonic is closest to their 
natural frequency, but upper modes may be nearly equally excited by two or 
more harmonics, giving beat phenomena in which the amplitude and phase 
of the mode each vary with a frequency equal to the harmonic separation, 
which is still a 'slow' variation relative to the natural mode frequency. In this 
way, all the upper harmonics of the generator frequency can be represented 
in the acoustic spectrum, even though their number may be greater than the 
number of modes in the same frequency range, as for example in the case of a 
cylindrical pipe. 

Nonlinear theory in the time domain 

The solution in the frequency domain, outlined above, has a counterpart  in 
the time domain which is simpler in concept though usually more difficult in 
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application to wind instruments. 8"~s Description of the motion of the reed 
and of flow through it is relatively simple in the time domain, since this 
description is given by the eqns ( 1 ) and (2) which are formulated in terms of 
the time-domain functions p(t)  and U(t).  To treat the air-column resonator in 
the time domain we need to know its impulse response, or Green function, 
G ( t - t ' )  which describes the pressure response at time t when a sharp 
impulsive flow is injected at time t'. If the injected flow has the more general 
form U(t') ,  then the pressure response is 

p(t)  = G ( t  - t ' ) U ( t ' ) d t '  (16) 

The difficulty arises from the fact that, since G is defined with the mouthpiece 
end of the air column rigidly closed except at the instant t = t', so that U will 
be zero, the pressure pulse produced by the impulse is reflected back and 
forth between the open and closed ends of the tube for a very considerable 
time. Stated in another way, the impulse response is actually just the Fourier 
transform of the input impedance, and if the impedance function has sharp 
peaks in the frequency domain, then its transform has a large extent in the 
time domain. The convolution integral (16) is therefore very extended and 
laborious to evaluate. 

Schumacher is has suggested a way out of this dilemma, in the case of a 
cylindrical horn, by recognising that there are initially no reflections when a 
flow pulse is injected into the air column, and the initial pressure response is 
just that due to the characteristic impedance Z o of the air column at its input. 
This suggests writing 

G( t  - t') = Z o d ( t  - t') + G ' ( t  - t') (17) 

and he shows that G' is related to the Fourier transform of the reflection 
coefficient r(co) at the mouthpiece end of the horn. Thus 

r(co) = [Z~(co) - Zo] /EZ~(e , )  + Zo] (18) 

where Z~ is the input impedance at the horn throat, and its transform r(t) is 
the impulse response when the horn input is blocked with a non-reflecting 
termination after the initial pulse is injected. In general r ( t -  t') will have a 
much shorter time span than G(t  - t'), though it may still be complicated by 
multiple reflections from finger holes and other irregularities in the bore. In 
terms of this reflection coefficient, Schumacher shows that the pressure 
response is given by 

p( t )  = Z o U ( t )  + f o  r ( t ' ) [ Z ° U ( t  - t') + p ( t  - t')] dt' (19) 

Equation (19) is in a simple form for numerical integration if the form of 
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r(t) is known and the initial conditions for U and p are specified. 
Unfortunately r is still a complicated function of time with a considerable 
duration for real musical instruments of the woodwind family. The general 
behaviour is clear, however, for the case of a narrow cylindrical pipe, for 
which reflection from the open end simply returns an inverted and delayed 
pulse, so that r(t) has the form 

r( t) ~ - - A 6 ( t  - -  z) ( 2 0 )  

Here A is a constant, slightly less than unity, which represents the effects of 
wall losses as the pulse travels along the tube, 6 ( t - t ' )  is a Dirac delta 
function, and r is the pulse travel time from the mouthpiece to the open end 
and back. In a more refined treatment the form ofr(t)can be modified so that 
it returns a slightly broadened pulse. Substitution of  (20)into (19) and its 
once-repeated form requires that 

p ( t )  = - - A p ( t  - -  r) + Z o [ U ( t )  - U ( t  - r)] (2t) 

p ( t )  = A Z p ( t  - -  2r) + Z o [ U ( t )  - 2AU(t - r) + A Z U ( t  - 2r)] (22) 

Taken together, and recognising that for a reed generator p >> Z0 U, these 
equations imply that the pressure waveform repeats with period 2r and has 
almost no energy in its even harmonics. The terms in U serve to maintain the 
waveform in (22) against the fact that A is slightly less than unity, and do not 
exactly balance out the even harmonics in (21). The actual waveform p ( t ) i s  

determined by the reed flow characteristic in (i) and (2) in conjunction with 
(21) and (22), or more realistically in (19). 

This same approach can be used for instruments with noncylindrical 
horns, but is then complicated by the fact that the characteristic impedance 
at the horn input is no longer the simple quantity Zo = p c / S  but a more 
complex function. The theory for the case of conical horns has been explored 
by Martinez e ta / . ,  19 '2°  and turns out to involve complicated divergences 
when there are changes in horn profile, making the analysis difficult in the 
general case. For a simple conical horn with a very small truncation at the 
mouthpiece end, detailed consideration shows that the wave period is not 2r 
but rather r. This accounts for the presence of even as well as odd harmonics 
in the spectrum of  conical instruments such as the oboe and saxophone. 

LIP G E N E R A T O R S  

Linear theory 

There are important  similarities between the behaviour of lip-driven 
instruments of  the brass family, the generator mechanism of which is shown 
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Fig. 7. The mouthpiece of lip-reed instrument such as the trumpet. The player's lips are 
forced open by the blowing pressure in the mouth. The mouthpiece cup and constriction form 
a Helmholtz resonator which assists tone production by modifying the input impedance 

curve of the instrument. 

in Fig. 7, and reed-driven instruments of  the woodwind family. There are 
also important  differences which arise from the fact that the blowing 
pressure tends to force the player's lips open, while in woodwinds it tends to 
force the reed closed. This appears as a change in the sign o f s  in eqn (1) and 
of(Po - p )  on the right-hand side ofeqn  (2) above. This has the consequence 
that the static flow characteristic U(po -p) simply rises with (Po - P )  and has 
no negative-resistance region. The form of  the acoustic conductance at non- 
zero frequency ~2 is similarly inverted compared with the reed case shown 

in Fig. 4, and now has the shape shown in Fig. 8. The region of negative 

l 

Frequency co 

Fig, 8. The small-signal acoustic conductance (real part of the admittance) as a function of 
frequency e) for a lip-reed generator of the trumpet type, with resonance frequency e) r. The 
mechanism acts as an acoustic generator for only a small frequency range just above the 

resonance frequency. 
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conductance associated with operation as an acoustic generator is limited to 
a narrow frequency range just above the resonance frequency of the 
mechanical vibration of the lips. If the static opening .% of  the lips in the 
absence of  blowing pressure is zero, as is generally the case, then there is no 
threshold blowing pressure required for generator action (though if .v o > 0 
there is a threshold just as for the blown-closed reed). 

The consequences of this behaviour are immediate. Clearly the player must 
adjust the lip resonance frequency to coincide quite closely with the 
frequency of the note to be played, and this frequency must also be very close 
to an impedance maximum of  the instrument air column, or rather of  the 
instrument in series with the player's vocal tract, in order that an adequate 
mouthpiece pressure can be built up to control the reed. Balance between the 
reactive parts of  the lip and instrument impedances will control the exact 
sounding frequency. The lip resonance can fortunately be made very 
narrow, so that notes lying only a semitone apart, and represented by 
adjacent resonances in the upper register of  an instrument such as the 
French horn, can be selected with good reliability by a skilled player. 

The input impedance of a typical brass instrument is determined by the 
length and profile of  the horn itself and by the Helmholtz resonance of  the 
cavity and back-bore of the mouthpiece cup.-' ~ This is illustrated in Fig, 9, 
which shows the calculated effect of  coupling a trumpet-like mouthpiece to a 
long cylindrical tube. The Helmholtz resonance of  the mouthpiece, loaded 
by the characteristic impedance of  the horn, raises the level of  impedance 
maxima in the playing range of  the instrument and thus helps tone 
production, as well as providing a comfortable support for the player's lips. 

8 
e- 

E 

8 ,< k_ 
Frequency 

Fig. 9. Calculated input impedance of a cylindrical tube fitted with a brass-instrument 
mouthpiece. The Helm holtz resonance of the mouthpiece raises the levels of impedance peaks 
in the playing range. The addition of a flaring bell to the instrument adjusts the frequencies of 
the resonances so that, with the exception of the first resonance, they have nearly harmonic 

frequency ratios 2, 3, 4 ..... 
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The exact frequencies of the horn resonances depend upon the flare at its bell 
end and are generally adjusted to produce a fairly accurate integer-harmonic 
series, though with the first-mode resonance unavoidably very much below 
its nominal frequency. The player selects any one of these resonances as the 
fundamental of the note to be played, and intermediate notes can be 
produced by shifting the whole frequency scale downwards by adding 
lengths of tube at the mouthpiece end of the instrument using valves or a 
slide. 

There is an interesting feature of brass instrument performance which 
arises from the considerable length of the horn--several metres in a typical 
case. The travel time for the first pulse of a note to propagate from the 
player's lips to the open end of the bell and then reflect back to the lips may 
be many periods of the lip vibration when a high note is being played. The 
player must thus adjust lip and vocal-tract resonances to produce a self- 
sustaining vibration during this time, and a characteristic attack transient 
will evolve. 

Once again, the radiated power, frequency spectrum and transient 
behaviour of the instrument are all dominated by nonlinear effects, and these 
can be treated either in the frequency domain or in the time domain. The 
formal development is identical with that outlined above for reed-driven 
instruments, so that all that is required is a set of  comments on the results. 

Nonlinear behaviour in the harmonic-balance approximation 

Description of the behaviour of the instrument mouthpiece and horn, 
together with the player's vocal tract, is relatively simple in the frequency 
domain, as we have outlined above. The behaviour of the player's lips is 
described by a driven harmonic oscillator eqn (2), as for a reed but with the 
sign of the driving term reversed. The resulting motion is now much simpler, 
however, since the driving pressure is close to the reed resonance, giving 
large amplitude, while all harmonics are well above this resonance frequency 
and produce very little disturbance to the motion. This has been verified by 
stroboscopic study, 22 the lips being found typically to just close once in each 
cycle in normal playing. With the lip motion x(t)= a(1 + sin e~t)determined 
in frequency and form, though not in amplitude a, it is now simple to write 
down the flow U(t) in terms of the pressure difference (Po-P) ,  using the 
modified form of eqns (1) and (2) appropriate for a lip generator. The flow 
U(t) can be decomposed into harmonic frequency components,  each of 
which lies close to an impedance maximum in a well designed instrument.-' t 
The analysis then proceeds as outlined for the reed case. 

We can simplify the analysis greatly, however, and obtain some immediate 
insight, by an approximate treatment. If we take the instrument resonances 
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to be precisely aligned, then the impedance met by each harmonic  of  the 
generator  flow is a nearly purely resistance R. F rom Fig. 9 we can also 
assume as an approximat ion  that R is nearly the same tbr the first few 
harmonics.  F rom (1) this leads to an equat ion of  the form 

p ~ R U ~ - - - - - ~  1 + (R-~)2_ ] - 1  (23) 

where/3 is the constant  in t roduced in (1), which is propor t ional  to the width 
of  the opening in the lips when their shape and tension have been adjusted to 
achieve the required resonance frequency co. This is a simplified form of  the 
harmonic-balance t reatment  developed by Backus & Hundley  23 for the 
trumpet .  

If the lip configuration and blowing pressure are adjusted so that the lip 
vibration ampli tude a is small, which goes along with a small value of fl, so 
that  fla<<2p~/2/R as would be appropr ia te  in quiet playing, then the 
approximate  solution to (23) is 

p ~, Rflp~/2x ~ Rflp~/Za(1 + sin ~ot) (24) 

Thus, at this low playing level, the acoustic pressure is nearly sinusoidal. 
Since the lip vibration ampl i tude  a increases with increasingpo, the acoustic 
pressure p in the mouthpiece  rises more  rapidly with blowing pressure than 
suggested by the form of  this equation.  Indeed, if the lip tension is 
maintained constant,  then we should expect the average value a of the lip 
opening to be propor t ional  to the blowing pressure, so that p should vary as 

P0 

O.-  

e-- 

0 5 
Normalised lip opening (R#/Po,/2)x 

Fig. 10. Approximate dynamic relationship between lip opening x and mouthpiece acoustic 
pressure p for a lip-driven brass instrument. The lip opening varies sinusoidally between 0 and 

2a about its mean value a. 
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about  the 3/2 power  of  the blowing pressure. In loud playing, on the other 
hand,  the width of  the lip opening and the lip vibrat ion ampli tude are both  
large, so that  the approximat ion  leading to (24) is no longer valid and we 
must  use the full form (23). 

The  shape of  this waveform, for a range of cases including the low-level 
approximat ion  (24), can be deduced by plott ing the curve given by (23), as 
shown in Fig. 10. The average lip opening is centred on the line marked  a, 
and the opening x itself has a sinusoidal excursion between 0 and 2a. The 
mouthp iece  pressure waveform p(t) will clearly be dis tor ted in an 
asymmetrical  manner .  Calculated results are as shown in Fig. 11, and the 
large-ampli tude waveform is very similar to that  actually observed for a 
t rombone  playing loudly. 24 The waveform is clearly nonsinusoidal  and 
contains overtones of  significant amplitude,  though  they are not  as marked  
as in the case of  a reed instrument.  

It is impor tan t  to emphasise, however, that  this t reatment  is only a first 
approximat ion.  To obtain a reasonably accurate waveform we must  clearly 
take into account  the detailed resonance properties of  the ins t rument  
mouthpiece  and horn, as exhibited in the complex input  impedance curve. 
We can then proceed to carry out the calculation in the manner  outl ined for 
the case of reed instruments.  

It is possible that, for very loud playing, the lips may close for an 
appreciable part  of each oscillatory cycle. If this happens,  the simple 

Time 
Fig. 11. Calculated flow or pressure waveforms for a lip-generator coupled to an ideal 
brass-instrument horn with harmonic resonances, for three different levels of playing 

loudness, increasing from the top. 
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treatment given above is no longer applicable, for the pressure oscillations in 
the horn while the lips are closed are no longer described by the simple 
approximation p ~ RU. In this case, which yields an even greater harmonic 
development in the tone, we must go to a more careful treatment. 

Nonlinear behaviour in the time domain 

An instrument of the brass family is in many ways more suitable for 
treatment in the time domain than is a woodwind instrument, since the 
smooth bore of the horn produces mostly a reflection associated with the 
sharp flare and open end of the bell. The large time delay between initiation 
of a sound by the lips and its reinforcement by waves reflected from the open 
bell also makes the time-domain treatment particularly appropriate. The 
nature of this bell reflection is quite complicated, but combines with the 
complex propagation behaviour of the horn to give a simple shape to 
the reflected pulse. This corresponds, in the frequency domain, to the 
adjustment of mode frequencies accomplished by the bell. 

The form of the analysis is very similar to that for a woodwind instrument, 
except that explicit note must be taken of the autonomous nature of the lip 
vibration. Clearly the time-domain approach gives a very direct description 
of the initial transient, since the integral in (19)is zero until the first part of 
the pulse returns from the bell, and during this time the mouthpiece pressure 
is simply Zo U(t) where Z 0 is the characteristic impedance of the horn at its 
input, modified by the Helmholtz resonance effect of the mouthpiece. No 
detailed discussion of  waveforms for brass instruments calculated in this 
way has been published, to our knowledge, but it is not expected that it 
would lead to any surprises. 

Frequency-domain analysis 

The treatment given by the harmonic-balance approach clearly applies only 
to the steady state. To derive a more accurate waveform and amplitude we 
must solve the pressure and flow equations in the frequency domain 
properly, as was indicated for reed instruments. The process is conceptually 
simple, but has a large algebraic and computational  load i fmore than a few 
resonator modes are considered. This treatment will give, however, the form 
of  the initial transient as well as that of  the steady state. 

In relation to the attack transient, upon the nature of which we remarked 
when discussing reed instruments, it is interesting to observe that the initial 
pulse propagation is in fact properly described by the frequency-domain 
analysis. The initial conditions for the nonlinear mode-growth equations 
(12) and (13) are those appropriate to injection of a pulse of airflow at the 
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mouthpiece of tl~e instrument. This excites all the normal modes at their 
natural frequencies and in phase at the mouthpiece. Such a state is, however, 
just the frequency-domain representation of a step-function located at the 
mouthpiece as origin, with zero amplitude elsewhere in the horn. The time- 
evolution of the mode amplitudes and phases, as described by (12) and (13), 
translates into the time domain as a propagation of the step-pulse along the 
horn, followed by a reflection from the open bell. It takes about one period 
of the lowest mode of the horn for eqn (12) to reduce its amplitude by a 
factor e if it is not the mode supported by the lip excitation, and this defines 
the length of the attack transient, all the other modes having adjusted to 
their steady state amplitudes and locked together in frequency in about the 
same time. 

AIR-JET GENERATORS 

Linear theory 

To complete this survey of wind instruments, we must look at those of the 
flute family, which are excited by an air jet blown across an aperture and 
impinging on a lip at the opposite side. Such a mechanism relies upon the 
deflection of the jet by acoustic flow at the aperture and is therefore 
described as a flow-controlled generator, to distinguish from the pressure- 
controlled reed and lip generators. A flow-controlled generator is efficient 
only near a maximum in the acoustic velocity of the resonator to which it is 
coupled, and the operating frequency is therefore close to a minimum in the 
input impedance, or equivalently to a maximum in the admittance. 

The linear theory of such an air-jet generator is essentially more complex 
than that of a reed generator, since it must describe the generation and 
propagation of disturbances along the jet. These are of two basic forms, 
'varicose', in which the thickness of the jet varies, and 'sinuous', in which the 
jet direction is modified. Varicose disturbances find application in cavity 
whistles in which the jet passes successively through two apertures, 26 and are 
not used in conventional musical instruments, all of which rely upon 
transverse sinuous displacement of a more-or-less sheet-like jet as shown in 
Fig. 12. The jet is always coupled to an air-column or air-cavity resonator in 
musical instruments, though it is possible to produce weak "edge-tones' from 
jets impinging on isolated obstacles. 

When a plane jet (either laminar or turbulent) emerges from a slit into a 
transverse acoustic flow field, it is deflected as shown in Fig. 12 and this 
deflection propagates along the jet with a phase velocity equal to about half 
the jet velocity. The amplitude of the disturbance grows, provided that its 
wavelength is greater than about five times the jet thickness; for shorter 
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Fig. 12. In an instrument such as a recorder or organ pipe, an air jet emerges from a flue or  
windway, passes across the mouth of  the instrument, and impinges on the upper lip. Acoustic 
flow through the mouth induces unstable waves on the jet, which grow as they propagate 

across the mouth and then interact with the lip to serve as an acoustic generator. 

wavelengths the disturbance is attenuated as it propagates.-'; The growth is 
exponential for small amplitudes, but becomes linear when the amplitude 
becomes comparable with the wavelength, the wave-like disturbance then 
breaking up into a complex vortex street. 

The interaction of such a sinuous jet with an edge forming part of a 
resonator has been widely studied, 2s-32 and the phenomena are now 
moderately well understood. The details of this drive mechanism are too 
complex to set out here, the jet flow driving the pipe partly through a 
dynamic-pressure effect, and partly through added volume flow, in a way 
which depends upon the magnitude of the jet velocity, the relative areas of jet 
and pipe, and the magnitude of the acoustic end correction. The final result, 
in the linear approximation, for the volume flow Up in the pipe produced by 
a time-varying jet flow Uj into the pipe mouth is 

Ue ~ [p( Vj + j~o Al)/Ap] U~ Ys (25) 

where Vj is the speed of the jet, Ae is the area of the pipe and Ys is the 
admittance of the pipe in series with its end correction A/. 

The important thing about the jet mechanism is that it has a built-in time 
delay because of the transit time of wave-like displacements from the slit or 
flue to the edge or lip. For a typical blowing pressure of a few kilopascals, the 
jet velocity is about 50 m/s and the wave speed about half this, so that the 
transit time from the slit to the lip, typically a distance of 5-10mm, is a 
fraction of a millisecond. This represents a very significant, and blowing- 
pressure dependent, phase shift in the excitation function. When all details 
are taken into account, it turns out that the linear acoustic conductance of 
the jet, as seen by the air column, is negative when this phase shift is around 
180 °, or an odd multiple of this quantity. The player can therefore select the 
pipe mode to be excited by varying the blowing pressure and, in the case of 
lip-blown flutes, the length of the jet33--this latter adjustment is not 
available, of course, in instruments such as the recorder. The general form of 
the admittance curve for an air-jet generator is as shown in Fig. 13. 
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Fig. 13. The complex acoustic admittance Y of an air-jet generator has a spiral form, either 
when plotted as a function of frequency for a given blowing pressure, or when plotted as a 
function of blowing pressure for a fixed frequency, though details of the curves are not 
identical. The air jet acts as an acoustic generator when the admittance lies in the left half of 
the complex plane, which corresponds to a phase shift of between about t2n + 1/2)n and 

(2n + 3/2)zr for wave propagation along the jet. 

Nonlinear behaviour 

The essence of the driving force is the volume flow of the jet into the pipe, 
which for larger amplitudes has a form like that shown in Fig. 14, saturating 
both when the flow is completely into the pipe and when it is completely 
outside the pipe. Detailed consideration shows that the shape of this curve is 
fairly closely a hyperbolic tangent function, 2v though any similarly shaped 
curve could be assumed. The driving force is linear for small excursions 
about the operating point O, but departs rather gently from linearity for 
larger amplitudes. 

We can use the same techniques outlined above to treat the nonlinear 
sound production mechanism in air-jet driven instruments. We shall not go 
into this in detail, but rather just look at the first approximation. To do this 
we first note that, with the jet length and blowing pressure optimally 
adjusted for a particular mode, the phase shift for the nth harmonic of this 
mode is approximately n n .  This means that odd harmonics will behave 
rather differently from even harmonics, but in most cases the second 
harmonic will not be reinforced by the jet-drive mechanism. Indeed the 
attenuation behaviour of the jet for short wavelengths generally means that 
there is very little'driving force for any of the higher harmonics. This 
statement is an oversimplification, of course, since the jet has a negative 
conductance over a considerable frequency range, or equivalently a 
considerable pressure range, about its optimal condition, but it will suffice 
for our first approximation. We thus assume that the feedback mechanism 
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Fig. 14. The flow U of a jet into the mouth of a pipe at the upper lip has a hyperbolic tangent 
form as a function of  the jet deflection. The sharp edge of  the lip is generally offset to a point 0 

a distance .% from the centre-plane C of the jet. 

reinforces the fundamental only, so that only this mode propagates on the jet 
and higher harmonics are produced by the inherent nonlinearity in the drive 
mechanism. 

Detailed consideration of  this situation 3-~ shows that the relative strength 
of  the harmonics is strongly influenced by the extent to which the pipe lip is 
offset relative to the centre-plane of the jet. Such an offset moves the 
operating point O of  Fig. 14 away from the symmetry plane C, and the result 
then follows from expansion of the flow function 

U(t) = (Uo/2){ 1 + tanh[xo + a sin (cot)] } (26) 

where x o defines the operating-point offset from the centre-plane C of the jet 
and a is the amplitude of  the jet displacement at the lip, measured in units of 
the jet half-width. The amplitudes of the upper harmonics produced by the 
driving function increase with increasing jet deflection amplitude, and their 
relative strengths vary with jet offset as shown in Fig. 15. To convert this 
driving function to response of  the resonator we need to multiply by the 
terminated resonator admittance at each frequency, as given by (25). In most 
flute-like instruments the resonances are well aligned, so that we can take the 
conductive part of the pipe admittance to be roughly constant, as we did for 
the impedance of the trumpet, and the resonator spectrum then parallels 
that of the drive function. An exception occurs, of course, for a stopped 
organ pipe, for which the admittance is high only for odd harmonics. In 
many flute-like instruments the upper partials are well developed, though 
the 'softness' of the nonlinearity in Fig. 13 means that they are much less 
fully developed than in reed or lip-driven instruments. 

Transient effects can be examined essentially as outlined before for the 
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Fig. 15. The relative levels ofthe harmonics generated by a jet interacting with an ideal open 
cylindrical pipe are influenced by the offset .,c o of the upper lip of the pipe away from the 
centre-plane of the jet. This quantity is shown measured in units of the half-width of the jet. 

The levels of  successive harmonics have been offset by 10dB for clarity. 

frequency-domain treatment, ~6 but in a dual way, in the sense that flows 
replace pressures and admittances replace impedances. Initial transients in 
jet-driven instruments typically occupy 20-40 periods of the fundamental of 
the note being played. 

Finally we note that nonlinear effects are very important in air-jet 
instruments in controll ing the transition from one pipe mode to 
another. 33'35 The exact value of the blowing pressure relative to that 
required to make a transition to the next higher mode also has a significant 
effect on the relative intensities of  the two modes concerned. 

CONCLUSION 

This review has only sketched the important  role played by nonlinearity 
in determining the sound output  of musical wind instruments, and shows 
in outline how one may reach a quantitative understanding of  the steady 
waveforms and transient effects that are so important  in giving each 
instrument its characteristic auditory effect. 

Concentrating on nonlinearity, it has not been the intention to belittle the 
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role of  linear effects or of  linear theory in determining and describing 
instrument behaviour-- indeed,  since nonlinearity is always with us. do what 
we may, and it is not unreasonable to take the approach of  looking after 
linear effects in instrument design and leaving nonlinearities to take care of  
themselves! Be that as it may, it is the nonlinearities, as this paper has tried to 
show, which win in the end. 
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