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Equations are derived to describe the propagation of axially symmetric waves generated at the 
apex of a conical shell, taking into account the coupling between longitudinal and transverse 
waves. A form of approximate solution is proposed, based upon the Green's function for wave 
propagation on a fiat plate but containing several variational parameters, the number of which 
can be reduced to one if additional approximations are made. It is shown that the region of the 
cone near the vertex moves amost like a rigid body, but the motion becomes wavelike at a distance 
from the vertex which decreases rapidly with increasing frequency, and at large distances the 
propagation is essentially the same as on a fiat plate. The one-parameter approximation is 
investigated numerically for two realistic situations, and appropriate solutions are presented and 
discussed. 

PACS numbers: 43.20.Bi, 43.40.Ey 

INTRODUCTION 

The vibrations of conical shells have been studied by 
many people,•-? partly because of the intrinsic interest of the 
problem and partly because of the obvious practical impor- 
tance of the subject in the design of loudspeakers. For this 
reason attention has been concentrated on evaluating eigen- 
frequencies and mode shapes for conical frustra either 
clamped or free at their truncation planes. 

The present study has initially been developed towards 
an understanding of the propagation of axisymmetric waves 
generated at the apex of a thin conical shell extending to 
infinity. This approach, which does not appear to have been 
followed before, gives considerable insight into the vibra- 
tional behavior of conical shells, from both physical and 
mathematical viewpoints, without the complications inher- 
ent in considering reflection from boundaries. 

In the interests of simplicity, we consider only the case 
of waves generated by an axial simple-harmonic displace- 
ment of the vertex of the cone. Torsional wave propagation 
could be treated rather similarly but the mathematical 
framework is quite different, as also is the physical context. 
Waves lacking circular symmetry have been excluded from 
consideration for the same reasons. 

I. WAVE EQUATIONS 

To derive the equations of motion in the simplest and 
most physically illuminating manner possible, consider a 
thin conical shell of semiangle ct and define coordinates as 
shown in Fig. 1. Here r is the distance measured from the 
apex, and the motion of the conical surface has been resolved 
into a normal component • and a tangential component r/. 

The equations of motion for both • and •/involve se- 
veral terms which can be usefully considered separately. For 
a given displacement •, •/) we can indeed identify separate 
contributions from plate stiffness, from hoop stress, from 
material compression, and from an additional Poisson 
stress. 

The displacement •, for example, gives rise to a local 

plate-stiffness force -- dV4•, where from the usual theory 

A = Eh 3/[12(1 - o:)], (1) 
where E is the Young's modulus, •r the Poisson's ratio, and h 
the thickness of the cone material. The displacement •, •/), 
however, causes an expansion in the hoop of material distant 
r from the apex of amount g cos a + •/sin a, and this gives 
rise to a hoop stress in a direction normal to the axis of mag- 
nitude 

H = (B/r • sin 2 a)• cos at + •/sin at), (2) 
where 

B ---- Eh/(1 -- o•). (3) 
The component of this stress in the• direction is - H cos a. 

Finally, though the effect of Poisson contraction asso- 
ciated with the displacement • is already included in the 
stiffness modulus A in (1), this is not true of the Poisson stress 
in the • direction arising from •7, or rather from J•q/a3r. This 
effect also contributes an inward hoop stress of magnitude 

p= • o• (4) rsina a3r' 

I a• I•t 

FIG. 1. Coordinate definitions for the conical shell. 

250 J. Acoust. Soc. Am. 72(1), July 1982 0001-4966/82/070250-05500.80 ¸ 1982 Acoustical Society of America 250 



and its component in the • direction is -- P cos a. 
Summing all these contributions, we find for the equa- 

tion of motion in this approximation, when the force F is 
concentrated at the apex as shown in Fig. 1, 

at 2 = --AV,•-- • •eoffa+•lcota+arcota 
F 

+ sin a/• (r -- 0}, (5) 
2•rr 

wherep is the density of the material of the shell and V, 4 is the 
radial part of V 4 in two dimensions, namely 

[ r 8r\ 8rll 

The form chosen for the applied force, which acts axial- 
ly at the apex and will be assumed to be sinusoidal, leads to a 
total forcs: amplitude F. In the real physical situation the 
coonical shell becomes solid within a distance of about h cot a 

of the apex so that the precise form of the force distribution 
within this region is not significant. 

The equation of motion in the r/direction is found by an 
analogous argument. The ordinary compressire strain con- 
tributes a stress of BV2v and the hoop stress a component 
-- H sin a in the r/direction. The r/part of the Poisson stress 
is included in the modulus B in {3) but the • part, or rather its 
gradient c9•/cgr, contributes a tangential force in the r/direc- 
tion of 

T= aB ø•'cosa. (7) 
r sin a ar 

The resulting equation of motion for •/is 

o•r/ = BV,•/_ --•(•cot a + r/ -- •rr cot a ph •-• Or 
_ _ff__F cos a 8 (r -- 01, (8) 

2•rr 

where V:• is the radial part of V: in two dimensions, as given 
by {6}. 

The two coupled equations {5• and {8} now specify the 
complete vibration behavior of the system in the linearized 
thin-shell approximation. The arguments by which they 
were derived may appear to lack rigor even in this approxi- 
mation, but it is comforting to note that the resulting equa- 
tions are identical with those derived more carefully by 
Goldberg and others,•'2 once some notational modifications 
and other minor algebraic corrections have been per- 
formed. 8 

It is also worth noting that in the limit a = 90', corre- 
sponding to a fiat plate, the two equations are no longer 
coupled and reduce to the expected simple forms. At the 
other extreme, a = 0 ø, the cone becomes a cylinder of radius 
R = r tan a and, if R is taken as finite, the equations once 
again have their expected simple uncoupled forms. 

II. APPROXIMATE SOLUTION OF THE EQUATIONS 

Solution of the coupled equations (5) and {8) over the 
whole domain 0<r < oo and with boundary conditions cot- 

responding to outgoing waves generated at r = 0 would ap- 
pear to present difficulty because of the singularity in the 
coefficients of both equations at r = 0. This problem was 
noted by Goldberg • in developing a series solution for a coni- 
cal frustrum. Paradoxically it turns out that actual inclu- 
sions of the point r = 0 in the physical problem removes the 
difficulty provided the cone angle a is finite. 

Before examining this point, however, we observe that 
the asymptotic solution to the equations in the limit of large ß 
is simple, for they then reduce to the forms 

ph y• - AV,•f 19) 
and 

= nv, (10) ph •-• fl. 
The solution appropriate to outgoing waves of angular fre- 
quency to can be expressed in terms of Hankel functions 
H, = J, + i N,, where J, and N• are, respectively, Bessel 
and Neumann or Weber functions, and we have assumed a 

time dependence of the form exp I -- itot }. The asymptotic 
forms are then 9 

•C,Ho(k,r -- •,)•C•121•rk, r) 'a exp[ i(k,r -- {•1 -- 
111) 

and 

•1 • CiHo(ktr -- g2) • C•(2/•rk, r)'/2 exp [ i{ktr -- •2 -- 4 l•r) ], 
(12) 

where C• and C• are amplitude coefficients, • and • are 
phase shifts which depend on behavior near the origin, and 
the transverse and longitudinal wavenumbers k, and kt are 
given by 

•, •--- •/A )1/40.)1/2 (13) 
k, = •h /B }l/2to, (14) 

Transverse wave progagation is dispersive while longitudi- 
nal is not. 

Turning now to consider behavior of the equation very 
close to the origin, we note that there are obvious physical 
difficulties with the model because of the finite thickness of 

the shell. These can, however, be ignored by simply assum- 
ing a shell of infinitesimal thickness and mechanical proper- 
ties defined by the superficial density ph and the elastic mo- 
duli ,4 and B. The neglect of nonlinear terms would be 
serious if, as in treatment of a simple membrane, the linear 
approximation predicted infinite displacement at the origin. 
However, the coupling between • and r/in (5) and (8), and 
particularly the hoop-stress terms derived from (2), save the 
situation by constraining the apex of the cone to move as a 
rigid body, while the known solution of (9} for the case of an 
infinite flat plate •ø has a finite amplitude and no singularity 
at the origin. We shall return to discuss this later, and for the 
present we simply note that continuity at the apex of the cone 
requires 

lim{• cos a + •/sin •z) = O. (15) 

Assuming now a time variation exp{ -- icot ) and consid- 
ering the open region ß > 0 in which the force is zero, it is 
convenient to seek solutions to (5} and (8) of the form 
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v = (17) 

Substitution immediately gives the recurrence relations 

(n + 2)2(n + 4)2a. + 4 + [ (k,/k t) cot a ] 2a. + 2 
+cota[cr(n+ 2)+ l]b,+2 --a, =0 (18) 

(n +3)(n + 1)b,+2 + cot a[oJn +2)- 1] 
x(k,/k, 12a. +, + b. = 0. (19) 

Each of the functions 2 and z/has two parts based, respec- 
tively, on even and odd terms. The leading terms a o and bo 
are determined by {15) which requires 

ao=asina, bo=--acoscr, (20) 

where a is the amplitude of the impressed axial motion at 
r = 0. It is then necessary to choose a 2 •o that the two even 
series asymptotically approach CtJo(k,r - 8,) and 
C2Jo{ktr -- 82), respectively, convergence being the criterion 
rather than any knowledge ofS, 82, Ct, or C2. The two odd 
series are then determined, without knowledge of the leading 
coefficients, by the requirement that they asymptotically ap- 
proach iC, No(k,r - 8•) and iC2No(ktr -- 82}, respectively. 

Unfortunately, this process does not appear analytical- 
ly or numerically feasible because of the instability of the 
series to small errors in the low-order coefficients. The rea- 

sons for this will emerge presently and lead us to an appro- 
priate approximate solution. 

Returning to the asymptotic form (9), we see that it is 
formally identical with the equation for the transverse vibra- 
tion of a fiat plate with the same physical properties as the 
shell material. The Greens function corresponding to outgo- 
ing waves when the plate is excited by a force F exp( -- icot ) 
concentrated at the origin is m 

•o = Co[do(k, r) + iNo(k, r) -- •o(ik,,) • iNo(ik, r)] (21) 

or equivalently 

2o = Co(•o(k,,) + i[No(k,,) + (2/•o(k,r)]}, (21') 
where Ko is a modified Bessel function and 

Co = (iF /8o)(p/hA )mexp( - iot ). [22) 

In this expression, the singularity in iNo{k, r) as r--•O is can- 
eelled by an identical singularity in iNo(ik• r) so that 2o is 
finite at r = O. Similarly the exponential divergence of iNo 
(ik•r) as r--•o is canceled by a similar divergence in 
-- Jo(ik• r) leaving an overall behavior of these two terms as 
r- ,/2 exp{ -- k, r) for large r. It is from difficulty in achieving 
exactly the correct values of the coefficients to effect these 
cancellations that the problem with the series solution (16)-- 
(19) arises. 

Considerations of continuity between the plate and the 
conical shell as a--•90' suggest that the form (21 ) might serve 
as the basis for an approximate solution of (5) and (8) by 
generalizing the argument of the functions involved. An ap- 
propriate generalization is to write 

• = a sin a(Jo[f{r)] + iNo[f(r)] 
-- Jo[i f(r)] -- iNo[i f(r)]), (23) 

where 

f(r}--*k, r as r---* •o, 
(24) 

f(r)--,k,r as r-•O. 

The demonstrable division of 2 {r} into a series of odd and 
even terms as in { 18) and (! 9) suggests thatf {r} should contain 
only odd powers of r. An appropriate smooth function satis- 
fying these requirements is 

(25) f(r) = k,r -- [zr'/2(k, -- k,)/2• ] erf•Ar), 
where eft(z) is the error function 

erf•z) = rr--i• f exp( -- z2)dz. {26} 

The parameter A will depend on frequency and on the semi- 
angle a of the cone, and we expect that k, < k, because the 
hoop stresses make the cone stiffer than the fiat plate near its 
vertex. The phase shift 8• in the asymptotic form (11) is then 

8, = rr'/2(k, -- k,)/2A. (27) 
The asymptotic form (10) for the longitudinal vibra- 

tions implies simply a solution involving Jo(kt r) and No(k • r), 
both of which must be present in order to give a solution 
appropriate to outgoing waves. However (15} requires that 
the singularity in N o as r-g) be eliminated, and this can be 
achieved only by adopting a form for •/based upon (21). The 
extra terms are appreciable only in the region near the origin 
where the coupling between • and • is important. We there- 
fore adopt the trial function 

•! = -- a cos a{Jo[g(r)] + iNo[g(r)] 
- Jo[ig(r)l - iNo[ig{r)]}, (28) 

where 

g(r) = ktr -- [ rr'/2(k, -- k2}/2 p ] erf•r). {29) 
The phase shift in the longitudinal wave at large distances is 
given by 

82 = •r'/2lk, -- k2)/2p (30) 
by analogy with (27). 

If we substitute the trial functions (23) and (28) into the 
original equations of motion {5) and (8), we find immediately 
that the singular behavior at the origin can be removed only 
if 

k, = k2 = 0. {31} 

We therefore adopt this restriction. 
Since we have abandoned the search for an exact solu- 

tion in favor of a reasonably compact analytical approxima- 
tion to such a solution, we must now devise an appropriate 
procedure to determine the two remaining parameters A and 
•. Unfortunately, since the domain of the problem is open 
rather than closed and the boundary conditions are inhomo- 
geneous rather than homogeneous, we cannot use the stan- 
dard variational methods of eigenfunction theory. We must 
therefore, instead, devise a heuristic approach appropriate to 
our particular problem. 

To do this we note that, if we had by chance achieved in 
(24) and (28) a set of functions including among them the 
exact solutions of (5) and (8} with the boundary conditions 
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appropriate to our situation, then for this set of values of the 
parameters the two functions, 

X (• cot2a + r/cot a + rrr cot at aV• ar / 

B 

Z•(r) = ph•o2•l + BVr•V r• 

X(•'cota + v --arcota •:r), 

and 

(32) 

(33) 

would vanish identically for all r. In the real situation in 
which {24) and (28) may approximate the exact solutions but 
can never be identical with them, the values of the residual 
functions Z• and Z• measure the extent of the deviations 
from the exact solutions. It is, therefore, reasonable to define 
some weighted combination Z of Z• and Z2, integrated over 
the whole domain of r, and to vary the parameters contained 
in • and r/so as to minimize Z. 

Definition of Z poses some problems since the varia- 
tions we are considering are not arbitrary but are restricted 
to a very limited class. If this were not so, then the obvious 
course would be to construct a sort of Lagrangean density 
L = Zl• + Z2r/and integrate this over the whole surface of 
the cone. However, the restricted forms of • and r/would 
allow cancellation of regions of positive and negative L, with 
misleading results, while the particular forms adopted for • 
and r/make it desirable to concentrate upon fit in the region 
near the apex of the cone rather than on more distant regions 
as in a simple integration over area. 

With these considerations in mind, we adopt for Z the 
linear mean-square error as defined by 

z = -' (IZ, I + Izl 2) dr. (34) 

Standard relations 9 are used to separate the real and imagi- 
nary parts of Z• and Z2 and the initial factor is included to 
simplify comparison of numerical results. Clearly any func- 
tions •' (r) and v(r) which make Z = 0 are exact solutions to 
our problem, while the minimization of Z with respect to the 
available parameters in trial functions f and r/produces, in 
some sense, a best fit to the real solution. 

Ill. NUMERICAL EXAMPLE 

While it is clear from our discussion what the form of 

the general solution must look like, it is highly desirable to 
compute a specific case. Before attempting this we simplify 
the calculation still further by noting that the primary reason 

TABLE I. Parameters for brass cones. 

Semiangle a 60 ø. 800 
Wall thickness h 0.5 mm 

Density p 8.5X 10 • kg m -• 
Young's modulus E 1X 10 • N m -2 
Poisson's ratio a 0.3 

8: 

80 ø 

•- 2 

0 I 2 3 4 5 

Frequency in kHz 

FIG. 2. Values of the parameter ,• minimizing the mean-square solu- 
tion error Z for brass conical shells of semiangle 60' and 80', respec- 
tively. 

for deviation of the solutions from their simple flat-plate 
forms is the coupling between transverse and longitudinal 
vibration modes. We might therefore expect the two para- 
meters Aand • of (25)and {29)to be rather similar in magni- 
tude. We can therefore greatly simplify the computational 
problem by making the assumption 

2 =/• (35) 

thus reducing the number of variational parameters to one. 
To relate our problem to reality, we now consider the 

excitation of a cone made from sheet brass 0.5 mm in thick- 

ness, with a semiangle of either 60 • or 80 ø. Other relevant 
physical parameters are given in Tabl• I. Approximate mini- 
mization of Z over an integration range R = 3 m (effectively 
infinite except for the lowest frequencies) gave the values 

0 1 2 3 4 

Distance r in meters 

FIG. 3. Real and imaginary parts of the transverse and longitudinal wave 
displacements • and r/on a conical shell of semiangle 600 at frequency 1000 
Hz at the instant when displacement is a maximum at the apex r = 0. Both g 
and •7 are always real at the apex. 
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1.5 

1.0 

0.5 

Frequency in kHz 

FIG. 4. Distance to the first zero of •'(r) when •'(0) is a maximum for 
con• of semian•le •', 80 • , •d 90 • (a •t plate). 

numerical predictions that can, at least in principle, be sim- 
ply checked. Work is now being begun in our laboratory to 
do this. 

By producing relatively simple analytical approxima- 
tions to the propagating-wave solutions, this approach also 
allows simple calculation of the shapes and eigenfrequencies 
of the axisymmetric normal modes of a conical shell of finite 
length with given boundary conditions at its free edge, the 
apex of the cone however being necessarily intact. 

ACKNOWLEDGMENTS 

This problem came to my attention during a study of 
the nonlinearity of the normal modes of certain Chinese 
gongs, initiated with T.D. Rossing of Northern Illinois Uni- 
versity under the US-Australia Cooperative Scientific Ex- 
change Program. The work reported here was supported by 
the Australian Research Grants Committee. 

shown in Fig. 2 for the parameter A for the two cone angles 
considered. For the integration range R, the function Z has 
the value R if we take A = 0, and increases without limit for 
very large A, The value of Z at its computed minimum 
ranged from 0.1- 0.9 depending on frequency. 

To illustrate the form of the solutions, these are plotted 
in Fig. 3 for the particular case of the 60 ø cone excited at a 
frequency of 1000 Hz. It is clear that, near the apex, the cone 
vibrates almost like a rigid body, with breakup into wavelike 
behavior at larger distances. The distance to the first sign 
change in the real part of •, and thus to the first reversal in 
the phase of the wave relative to its rigid-body behavior near 
the apex, is plotted in Fig. 4, for several cone angles. Clearly 
the breakup into wavelike behavior approaches the apex of 
the cone very rapidly as the frequency is raised--a pheno- 
menon well known to the designers of loudspeakers. 

IV. DISCUSSION 

This treatment of wave propagation on a conical shell is 
admittedly crude and preliminary in nature, but it has the 
advantages of producing both a qualitative picture of the 
behavior based upon simple physical concepts and a set of 
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