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Many musical instruments consist essentially of resonant systems having only approximately harmonic 
normal modes and excited by a force that depends nonlinearly on the velocities associated with tho•e 
modes. An approximate condition is derived for the resulting sound spectrum to consist of components 
rigorously locked into harmonic relationship. Such mode locking is favored by nearly harmonic normal 
mode frequencies, by large mode amplitudes, and by large nonlineartry in the driving force. 

PACS numbers: 43.75.Ef, 43.40.At, 43.75.--z 

INTRODUCTION 

Musical instruments capable of producing a sustained 
tone (e. g., wind instruments and bowed-string instru- 
ments) consist essentially of one or more resonant sys- 
tems (air columns, cavities, strings} with very nearly 
linear acoustic behavior, excited by a nonlinear source 
(lips, reed, air jet, bow) with which they are coupled to 
produce a regenerative feedback loop. This uonlinearity 
is generally essential in determining the amplitude of 
steady-state oscillations of the resonant system, and it 
also has a major influence on the nature of the radiated 
acoustic spectrum. t'a 

The general problem to be investigated in the present 
paper arises from the fact that the natural modes of any 
real acoustical resonant system are never in exact har- 
monic relationship, because of second-order effects like 
end corrections and string stiffness. It is common ex- 
perience that nonharmonically related sounds ("multi- 
phonics" or "burhies") can be produced on most wind in- 
struments, though in normal tone production the over- 
tones are accurately harmonic and locked in both phase 
and frequency to the fundamental. It is therefore our 
purpose to inquire into the features of the system that 
are responsible for this mode locking. The analysis 
will be kept as general as possible, though some specif- 
ic examples will be discussed. 

I. SYSTEM EQUATIONS 

Suppose the resortant system possesses a set of nor- 
mal modes with frequencies hi, and let xt be a general- 
ized coordinate associated with the ith mode--we shall 

explain in a moment just how this coordinate should be 
interpreted in particular cases. Then, in the absende 
of an exciting force, theae modea will obey oqtmtiona o• 
the form 

• + • ;q +n•x• = O, (1) 

where • > 0 are the mode damping coefficients. We as- 
sume that all the mede equations of the resonator are 
linear, as shown, with the nonlineartries of the system 
concentrated in the driving mechanism. This is true to 
a very good approximation in most systems of interest. 

Now suppose that the resonant system is acted on by 
an external force F which has no explicit time depen- 
dence of its own, but which is generated by the action of 

the resonator modes on a valvelike mechanism--again 
we give examples in a moment. Then we can write F as 
F(;ct,;c•. .... ), or as F(;Q) for convenience. The reason 
for choosing xj rather than x ! will again be apparent in 
a moment, but we note that in any case ;Q and x• are 
simply related through (1). Under the action of this 
driving force the ith mode now obeys an equation of the 
form 

• +•t•:• +n•x• =x t F(•), (2) 

where the X t are coupling coefficients which we shah 
take as real, any complex phase shifts being included in 
the form of F. Thus, for example, the ;c t on the left 
side of (2) refer to time t, while the •j in F may be 
evaluated at some earlier time t - 5 t. 

To put some flesh on this skeleton we note that in or- 
dinary musical instruments we commonly find one of two 
possible generators. The first is the velocity-controlled 
generator used in the bowed-string instruments or, in 
different physical realization, in air-jet driven instru- 
ments of the flute family. The second is the pressure- 
controlled reed or lip valve found in woodwind and brass 
instruments. 

In the case of bowed strings, the frictional force F ex- 
erted by the bow on the string is a simple but highly non- 
linear function of the relative velocity between the bow 
and the string at the bowing point. In this case x t is 
the displacement coordinate for the ith string mode, and 
A t is large if the driving point is near to an antinode of 
string velocity 

In the flute family an air jet is deflected into and out 
of the pipe by the action of the acoustic volume flow out 
of the pipe mouth. Because the interaction between the 
jet and thig flow takoa place at th• apert•ure from which 
the jet emerges, while the jet interacts with the pipe 
modes at the pipe lip, there is a phase delay 51, corre- 
sponding to wave propagation time along the jet together 
with any interaction phase delays, built into the :•t of F. 
In order that •! imply an acoustic flow velocity, xl must 
represent acoustic volume displacement and F should 
be expressed as an effective driving pressure. The 
coupling coefficient •i wfil be large if the driving point 
is close to an antinode of the acoustic velocity 

In woodwind and brass instruments the action of the 

generator• which controls acoustic flow into the system, 
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is governed by the difference between the blowing pres- 
sure and. the acoustic pressure inside the instrument 
mouthpiece. To use our Eq. (2) we must therefore 
choose k• to represent acoustic pressure, so that x i is 
the integral of pressure with time, and F is expressed 
as an acoustic volume flow. Again there may be a 
phase shift involved in F because of the resonance prop- 
erties of the reed system. k i is again large if the 
driving point is close to an antinode of •, but here this 
implies a pressure antinode. 

By making these identifications of the generalized co- 
ordinates xi, we see that the pressure-controlled sys- 
tem is essentially the dual of the velocity-controlled 
system. The former sounds at frequencies which are 
close to impedance maxima at the driving point, and the 
tatter close to admittance maxima, as, is well known. t 
We must be careful, however, not to carry the idea of 
duality too far, since the form of the nonlinear function 

F(kt) may be very different in different cases. With 
this reservation we can now return to our formal devel- 

opment. 

To solve this set of equations we use a method dis- 
cussed by Bogoliubov and Mitropolsky. a Assume a set 
of quasi-steady-state solutions of the form 

x I =a• sin(•olt +qS!) , (3) 

where both a• and q•, are slowly varying functions of 
time. To restrict the freedom allowed by this speeili- 
cation, we also require that 

k• = alco • cos(cod + •!), (4) 

which implies the relation 

/h sin(wit + 4•) + a• cos(wit + q•l) = 0. (5) 
ff we substitute (3) and (4) into (2), make use of (5), and 
then neglect terms not varying slowly compared with 
we find 

(h l) = (X•/COO(F(k •) cos(co•t + •l)) - •Ki l, (6) 

{•) = -- (Xl/a•w•){F(k •) sin(colt + •bl)) + (hi - w])/2co I . (7) 
The brackets ( ) imply that only slowly varying terms 
are to be retained. 

This approach has been applied elsewhere *'s to treat 
the transient and steady state speech of organ flue pipes. 
It is our purpose here to see what statements of a more 
general nature can be made. To this end we suppose 

that F(•) can be expanded as a generalized power series 

F(•j)=•.,.•.., ("' ' k ' (8) 
where the coefficients c have the operator property of 
introducing time shifts 5• or corresponding phase shifts 
into the x• with which they are associated. From the 
expression (4) for k• it is clear that the general term in 
the summation (8) can be written as 

ß iSn=•'•gl-.t?lt aSnO.)$1 ('o.f n x•]... z.., • ...... 

where the summation is over all possible choices of 
• ...j.. The operator action of the coefficient c (" may 

then introduce a phase shift into the argument of the co- 
sine in (9) that depends on the particular set of modes 
involved in the term. Finally the averaging implied by 
the brackets in {6) and {7) selects only terms for which 

col • co• x + w•2+ "ß +w•n~-0, (10) 
in the sense that this sum is very much smaller than co•. 

II. MODE LOCKING 

The case of primary interest in musical acoustics is 
that in which the normal modes form an approximate 
harmonic series. For such a case we can write 

n, =io• + A• , (11) 

where co is the fundamental frequency of the related ex- 
actty harmonic series and is not generally equal to n•, 
the frequency of the lowest mode. If only the odd mem- 
bers of the series are present, the argument can easily 
be modified. In more general cases the relation (11) 
with A• < co can always be preserved by introducing null 
modes of infinite impedance and appropriately re-num- 
bering the real modes. 

For a system that is only weakly nonlinear and that is 
excited by only a small force F, the soluUon of (6) and 
(7) is easily appreciated. The only important term in 
(9), bearing in mind the restriction (10), is alto ! cos(colt 
+q•!) and the coefficient c (t) may introduce a phase shift 
61 into this. From (6) the oscillation at mode i will grow 
provided 

• ½t) • >0 (12) •3.•c! COS•!-- •K ! 

and from (7) the osciliation frequency of this mode is 

wl + q•! =n• + «Xlc• i) sin6 i . (13) 
Clearly, ff there is no phase shift in the excitation 
mechanism, so that 6• = O, the excitation conditions are 
optimal (assuming c•)> O) and the mode displays its 
natural frequency. If phase shifts are involved• the 
mode oscillation shifts from its natural frequency. 

None of this, however, is sufficient either to limit the 
vibration amplitude of the modes or to induce harmonic 
locking of their frequencies. Suppose that (12) is satis- 
fied for only one mode, then the amplitude at will in- 
crease until the cubic term, which is the first that can 
satisfy (10), becomes appreciable. l•stead of (12) we 
then have as condition for growth 

«h,f (t) t (3) • • -•/• >0 (14) cos6,(c• + •cmn!%)- 2 i . 

This condition will provide a limit to the value of al pro- 
vided c is) is of opposite sign to c a). If this is not the 
case, then limiting will be accomplished by the first of 
the c[.•.•.[ • that is of opposite sign to c a•. 

To discuss mode locking, first consider a system 
with just two modes i and j such that 

qj =pi, qni-•/m ! , (15) 

where D and q are integers. This could be the case, for 
example, in a multimode system for which the growth 
condition (12) is satisfied only for these two modesß 
Considering only leading terms, as given by (9) and (10), 
we have from (7) 
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3C •...!...,•,•t •! -- 

+p(•, + 6•)- q(,• + 6•)+ 6•]}, (16) 

4 • if•f,,f • 

+•(•,+ •)- v(• +•)- •,]). (iv) 
•here 

• (1•) and (1•) 5f and • aFe the p•se sh•ts pr•u•ed 
in •e exci•i•n •ec•nis• a• frequent{es., and 
respectively. •e have also set •{ =•, and • =• to 
el•inate •e last ter• in (7), •hich •fectively pr•uces 
•iS sh• i• •) •FoYid•d •f•f Grid •y •y. 

The cond{fion Zor •e locking is no• tha• •ere exis• 
so•e set • •hases •f and •, and so•e co•on ire- 
quency •se • such t•t, dropping the ( ) fro• <•) 
convenience, 

which can be wriflen 

p$, - q$• = • - pn, . (20) 
E•mination • (16) and (l•) shows •t •ch • has 

•r[s. •e first set of terms describes modification 
•e uncoupled sounding frequency • •e mode, as in (13), 
because of the p•se sh•[ 6 in the driving force. The 
second set of terms descri•s •e locking interaction 
be•een the modes. Let us include •e first •rt of 
with •e na•r•l m•e frequency n to give a sounded 
mode fre•ency n •. We note further that •e locking in- 
refection terms •ve a sinusoidal factor whose value 

swings be•een ß 1 •nd - 1 until m•e locking occurs. 
From (20), •erefore, • necess• condition for mode 
locking is •at for some •, 

J• •'•'" •-•-• sin(•. •) 
(•1•) -1 •- • - ß qx•C•...•...4 • • sm(•- 

> qn$l. 
Prodded •is condition is satigi• for •e m•e ampli- 
•des •1owed by (14), mMe locking •n occur, with the 
•ases • and • adjusting to •ve e•etly •e right con- 
ditions in (16) and (1•). •ce mode frequencies are 
momenmrUy •rmonie, the subsequent amplinde and 
phase adjustments for me steady 8rate occur gen•y and 
do not dis•rb the frequency locking. The result (21), 
which could • course be refined by addition • higher 
terms, is •e basis of our further discussion. 

III. DISCUSSION 

To see the conclusions arising from (21) we should 
first note that for most ordinary nonlinear systems, the 
expansion coefficients c ½•) in (8) will decrease rapidly in 
magnitude as the value of • increases. This is physi- 
cally necessary ff the force F is to have a reasonable 
behavior. In many cases of physical interest, therefore, 
it will be only n values of 1, 2, or 3 that are significant. 

This in turn means that only values of 1, 2, and 3 will 
generally enter for p and q in (21). 

From (21) we can immediately specify, therefore, the 
conditions required for mode locking: 

(a) The integers p and q specifying the relation be- 
tween the modes must be small (p +q < 4); 

(b) The sounding frequencies n• and n• (and thus also 
the natural frequencies n• and hi) of the modes involved 
must be nearly harmonically related; 

(c) The coupling coefficients ;•f and A• between the two 
modes and the driving force must be large; 

(d) The driving force must be highly nonlinear, as ex- 
pressed by the magnitude of c •') and c (•) relative to c½'); 

(e) The mode amplitudes a{ and aj must be large. 
Conversely, if the instrument is to produce a multi- 

phonic effect with nonharmonically related tone compo- 
nents, it is desirable for the resonator to possess at 
least two resonances capable of oscillation whose fre- 
quencies differ by less than a factor of 2. This situation 
can be achieved by a random opening of finger holes on 
many woodwind instruments. The precise mechanism 
by which nonlinearity is reduced while maintaining ade- 
quately large coupling coefficients A• and ;•i to cause the 
two modes to sound depends in detail on the instrument 
involved. For flutelike instruments the player generally 
uses a wide air jet to reduce nonlinearity, and a care- 
fully controlled blowing pressure and jet length to adjust 

5i and 5 i so as to satisfy (12) for both modes. The phys- 
ical adjustments in reed and lip-driven instruments are 
somewhat less clear. 

Another situation that sometimes arises with strong 
blowing in organ pipes is that in which modes 2 and 3 
satisfy the sounding condition (12) but mode 1 does not. 
The nonlinear coefficient linking modes 2 and 3 has 
p +q= 5, and so is relatively small even in a normal 
pipe. The modes may therefore remain uncoupled if 
they are appreciably inharmonic, and produce an un- 
pleasant beating sound 4's near the frequency of mode 1. 

The behavior of bowed strings is somewhat different 
from [hat of pipes because the bowing mechanism always 
provides a highly nonlinear force, even for very small 
oscillation amplitudes. In addition, the modes of a thin 
string are very nearly harmonic, so that condition (21) 
is almost always satisfied and the modes are always 
locked in normal playing. 

An exception to these statements occurs in the case 
of a narrow bow applied exactly at a node of some mode 

i. It then follows that the corresponding •t• and any of 
the •½r.s• containing the subscript • are zero. Mode i 
is therefore not coupled in the same way as the other 
modes. There are, however, driving terms of frequen- 
cy iw • n• generated by coupling between the other modes 
and these can further couple to string mode i through 
their effect on string tension, giving a locked mode i of 
appreciable amplitude. 

Many other cases could be discussed in a rather simi- 
lar manner. The object of the present note has been to 
provide a framework for doing so. 
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