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The common assumpiion that the speed of sound in a
gas 18 determined by the adiabatic compressibility because
the pressure variations are so rapid that no heat flow can
take place 1s shown to be tncorrect. The criterion for ap-
plicabilily of the adiabatic assumption in a free wave 1s
rather that the frequency be lower than a certain very high
limit. The propagation of sound in tubes is also discussed
and it is shown that the frequency must, in addition, lie
above a certain low limit if the adiabatic assumption is
to be valid.

All introductory courses in the mechanics of
waves include a discussion of the propagation of
plane sound waves through gases. The two funda-
mental equations are Newton’s second law of
motion, relating acceleration to pressure gradient,
and the continuity equation expressing the con-
servation of mass. Both of these can be linearized
by the assumption that the acoustic pressure in
the wave is infinitesimal in comparison with the
static pressure.

A third equation is needed to complete the set
and this is the equation of state relating pressure
and density in the acoustic wave. The adiabatic
gas equation

pV7=constant (1)

is known to be appropriate here, and it is an
almost universal practice to justify this assump-

tion in words somewhat as follows:

The alternations of pressure and density
are so rapid that...no heat energy has time
to flow away from the compressed part of
the gas before this part is no longer com-
pressed.

Or perhaps:

The changes in state normally occur so
rapidly in a sound wave that there is no time
for the temperature to equalize.... The
changes of state are not isothermal, there-
fore, but adiabatic.

These two quotations are taken respectively from
the classic treatment by Morse! and from an
excellent account published recently by Meyer
and Neumann.?

According to Lord Rayleigh,* Newton made the
opposite assumption that the compressions and
rarefactions occur isothermally, and it was
Laplace who explained the discrepancy between
theory and experiment by introducing the adi-
abatic assumption, justifying this in words very
similar to those quoted above. Rayleigh quotes a
discussion given later by Stokes which applies,
however, to the propagation of sound waves in
gases at very high temperatures where radiation
is the dominant mechanism for heat transfer.

The rather surprising fact is actually that these
justifications are completely incorrect, and the
reason for the validity of the adiabatic assump-
tion for sound waves is that the changes in
pressure, and hence in temperature, occur so
slowly that appreciable heat flow cannot take
place. This fact is actually “well known” in a
scientific sense but is certainly not appreciated
in a more elementary sense by the writers of text-
books and monographs.

To see how the apparently paradoxical state-
ment which I have made above comes to be true,
let us consider the first law of thermodynamics
applied to a small volume of gas through which a
plane wave is moving in the x direction. The
relevant equation for a small element of gas
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during a short time interval df is

where py and p, are the static density and pressure,
respectively; C, is the specific heat at constant
volume; and d@, dT', and dV are the changes in
heat content, temperature, and volume, as usual.

The essence of the adiabatic assumption is to
set the left hand side of Eq. (2) (which represents
the change in heat content of the gas element)
equal to zero. We then have

poCodT = —podV, (3)

and Eq. (1) follows in the usual way.* For this
to be a valid approximation, however, the term
d@), which appears in Eq. (2) essentially as a
correction to Eq. (3), must be negligibly small in
comparison with the terms on either side of Eq.
(3). Writing this condition as

| dQ |<<| poCdT | (4)

and dividing by the time interval dt gives
| 9Q/dt |<KpCy | 9T /08 |. (5)
Now the change with time of the heat content
@ is caused principally by conduction in the case
of gases at ordinary temperatures, so that we can

write

9Q/ot =K (9T /d2?), (6)

where K is the thermal conductivity of the gas.
The inequality (5) therefore becomes

K | #T /822 |<<pC | 8T/t | (7)

or, introducing the thermal diffusivity « defined
by k=K/p,C.,

| 82T /o |k | 8T /0t . (8)

Now suppose we have a sound wave with
angular frequency o, propagation constant k,
and amplitude A moving in the = direction, so
that the acoustic pressure varies as A sin (kz—wt).
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Because the equation of state,
pV=RT, (9)

is linear for waves of small amplitude, the temper-
ature T also varies to first order as T+ B sin(kr—
wt), where T is the static temperature and B is
proportional to the amplitude 4. The condition
(8) can then be written

k2 | sin(kz—ot) [<(w/x) | cos(bz—ot) |, (10)
which requires that

P<a/k (11)
or
wK et/ k, (12)

where ¢ is the sound velocity defined by ¢c=w/k.
It follows, therefore, from inequality (12), that
the condition for validity of the adiabatic as-
sumption is that the frequency of the sound wave
should be low!

To make clearer the reason for this situation,
let us consider the sound wave in simple pictorial
terms. The regions of high and low pressure (and
hence of high and low temperature) are separated
by a distance A/2, and the condition for validity
of the adiabatic assumption is that negligible
heat flow oceur between them in the course of a
half-period of the wave during which time the
temperature distribution will be reversed. For a
wave of angular frequency w, this time is 7/w.

Now heat flow is a diffusive phenomenon and,
in rough terms, the distance over which heat
diffuses in time ¢ is («f)Y? where « is the thermal
diffusivity. The condition for validity of the
adiabatic assumption is therefore

(kw/w) V2N /2, (13)
which, since A =2r¢/w, reduces to
wmwct/k, (14)
which is essentially equivalent to relation (12).
It is interesting to insert some numbers into

this criterion to determine the range of validity
of the adiabatic assumption. For air, ¢>~340



m/sec and x=>~10% m?/sec™!, so that we require
w10 sec™t, This criterion is amply met for all
acoustic waves. The conduction of heat does,
however, represent a dissipation mechanism so
that there is an attenuation during propagation
which increases as the frequency increases. The
quantity leading to the criterion (12) is es-
sentially the fraction of heat energy lost per
wavelength, and this must be multiplied by the
wave number to find the attenuation coefficient,
which thus increases more than linearly with in-
creasing frequency and actually as «? The at-
tenuation of sound in air becomes large at fre-
quencies of order 10° Hz, but this is due to viscous
and molecular-excitation losses as well as to heat
conduction.

As a related case it is interesting to apply the
same sort of reasoning to diseuss the propagation
of a sound wave in a tube. Clearly, if the fre-
quency is low enough, the air will be able to ex-
change heat with the tube walls so that the be-
havior will be isothermal rather than adiabatic
and the wave velocity will be correspondingly
lower. The discussion follows that leading to
{13), except that the relevant distance for heat
transfer is now not a half-wavelength for the wave
itself but rather the radius R of the tube. For the
adiabatic approximation to be valid in a heavy
tube with conducting walls we must therefore
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have
(km /) PR (15)
or
w>nk/ R (16)

Note that this inequality is in the opposite sense
to (14). For a tube of radius 1 cm this transition
frequency is of order 10! Hz, but for eapillary
tubes it lies in the audio frequency range. This
transition and the related change in sound
veloeity were observed long ago by Kundt?
and it is probably from eonfusion between this
and the free-wave situation that the textbook
misunderstandings have arisen. For the adiabatic
approximation to be valid for tubes, of course,
both conditions (12) and (16) must be satisfied.

This curiosity came to my attention during the
course of a research program on musical acoustics,
supported by the Australian Research Grants
Committee.
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