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DENDRITIC GROWTH OF ICE CRYSTALS
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The dendritic branching of ice crystals grown from the vapour at temperatures between -

10 and —20 '°C

shows some features which are not adequately described by the existing theory. It is proposed that surface
diffusion driven by the gradient in concentration of surface adsorbed molecules may be an important
mechanism for growth stabilization in ice and that growth to the form of a sector-plate occurs when, because
of non-linearity in the adsorption isotherm, this stabilization is no longer adequate. It is further proposed
that true dendritic growth may, in this case, be associated with a change in interface kinetics at high super-

saturation.

1. Introduction

The habits of snow-flakes and of ice crystals grown
from the vapour under laboratory conditions exhibit a
variety and extremity of form'-?) and a symmetry of
pattern which has long excited artistic and scientific
curiosity and demanded explanation. Nakaya's original
classification of growth morphology in terms of the
temperature and supersaturation of the environment?)
has been refined and extended by Hallett and Mason?)
and by Kobayashi* ?) so that it is now clear that there

are two almost independent influences: temperature and
excess vapour density relative to ice. This modified
Nakaya diagram, as developed by Kobayashi, is shown
in fig. 1.

Only for very low growth rates and excess vapour
density less than about 0.04 g m~? is the crystal
morphology that which would be expected from Wulff’s
theorem, the shapes being nearly equiaxial hexagonal
prisms. For faster growth rates the habit shows extreme
variations, from needles with axial ratio greater than
10: 1 to plates with axial ratio less than 1:10 over only a
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Fig. 1. The Nakaya diagram as modified by Kobayashi®).
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degree or so. Such variations can only be due to kinetic
effects. The spectacular dendritic growth characteristic
of snow-flakes takes place only at temperatures be-
tween about —10 and —20 °C and for vapour density
excess greater than about 0.25 g m~>. For excess
vapour density in the range 0.1 to 0.25 g m~ 2 the
morphology is usually described as a “‘sector plate”
and consists of six individual hexagonal plate-like
growths linked symmetrically to a central hexagon.
Examples of both dendritic and sector crystals are
given in plate 1 of ref. 6 as well as in refs. 1 and 2.
Details of the growth morphology depend critically
upon supersaturation but little upon crystal size.

Work over the past decade is leading to an under-
standing of dendritic growth in general and there is
now a general concensus on the origin of the extreme
habit changes with temperature in ice. There remain,
however, several important aspects of the ice dendrite
problem which are not implicit in present theoretical
treatments. It is the purpose of the present paper to
propose an explanation for these.

2. Surface diffusion and habit change

Because the extreme habit variations in ice crystals
must be kinetic and have been observed only in the ice
system, their explanation must be sought in a kinetic
mechanism at the ice/vapour interface with a strong
temperature variation peculiar to ice. The surface
phase change a few degrees below the melting point,
proposed long ago by Faraday and given more detailed
treatment by the present author’) provides such a
possibility, although its reality has yet to be conclusive-
ly demonstrated. Hallett®) and Mason et al.®) have
found a strong oscillatory behaviour of the surface
diffusion length on the basal surface of ice in the range
—10 to 0 °C which could be the result of this phase
change and could supply the necessary kinetic mechan-
ism for habit change®). There are some remaining
difficulties in correlating the direction of change in
diffusion length with the resulting crystal habit, but
these will not concern us here.

3. Dendritic growth

Present understanding of the morphological in-
stability process leading to dendritic growth is based
upon the work of Mullins and Sekerka'®). They
showed that perturbations of a sphere growing in a
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diffusion field are unstable except for the modifying
influence of surface free energy which stabilizes the
shape for spheres of radius less than about seven times
the critical radius for growth. This predicts, in a general
way, dendritic growth at 109, supersaturation for
spheres larger than a few tenths of a micron.

This theory has since been extended in various
ways''~1%). Coriell and Parker''), in particular, have
shown that surface diffusion provides a further stabiliz-
ing mechanisms by tending to destroy any perturba-
tions on the growth surface. The stabilization effect of
surface diffusion is very considerable and might
typically lead to stability up to radii of nearly 1 pm
for a 109/ supersaturation.

If ice has an anomalously high surface diffusion
coeflicient, which is possible, then this theory may be
able to account for the persistent growth of ice crystals
as featureless hexagonal plates up to diameters of 50
um or more at low vapour density excess. Because the
surface diffusion in the theory is driven by the thermo-
dynamic force of surface curvature, it is independent of
vapour density excess in the environment so that its
stabilizing influence is less at greater supersaturations.
This is in agreement with the greater tendency toward
dendritic growth at large supersaturations. While sub-
sequent papers'2''?) have included the effects of inter-
face kinetics in the development, none seems to have
taken account of differential surface adsorption as an
additional driving mechanism for surface diffusion.

Now the situation with which we are concerned is
one of large supersaturation in the environment, and
direct experiments®:7) have shown that even under
these conditions ice surfaces can support the associated
vapour density excess without growth other than by
step migration. Under these circumstances, however,
the density of surface adsorbed molecules must be
appreciable and must depend upon the vapour density
excess at the surface. Since this quantity varies largely
from one part of the crystal to another, the gradient of
concentration of adsorbed molecules must provide a
further stabilizing process against dendrite formation.

4. Surface diffusion and dendritic growth

To make our point about the importance of this
mechanism, it is not necesary to solve the crystal growth
problem completely; a semi-quantitative solution will
be adequate. Consider then the growth of a hexagonal
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plate crystal and suppose that the growth mechanism
on basal faces is so slow that they are effectively inert.
Let us concentrate attention on one of the crystal
prism faces of length 2/ and thickness ¢ and divide it
into regions A and B as shown in fig. 2. Suppose that
the average vapour density at the A surface is p, and
that at the B surface pg, while the vapour density at a
large distance is p , .
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Fig. 2. Growth regions and fluxes for a hexagonal plate, as
defined in the text.

The rate of vapour deposition onto the two surfaces
A can be drived from dimensional analysis and involves
the product [*r* where x+1 = I. From fairly general
considerations we expect x =~ y, though the detailed
relation between them may depend on the angle of the
crystal vertex and the ratio //t. It is therefore a reason-
able approximation to write

Jya = aDy(p, —pa) (INF, (n

where D, is the vapour diffusion coefficient and z is a
numerical coefficient of order unity, determined solely
by the geometry of the crystal and independent of its
size. Similarly the rate of deposition onto surface B is

Jyva = BDy(p, _/)B‘)([t)i , (2)

where f# is a similar constant. For a normal convex
crystal o > f.

Now for growth by a lateral mechanism in which
steps are nucleated at the corners in region A and then
propagate across the surface through regions A and B
in turn, the growth velocity is independent of the sur-
face adsorbed concentrations n, and ny provided they
are both greater than the equilibrium value, and depends
only on the flux of molecules to the region concerned.
This is so because the growth steps pile up in regions of
low surface adsorbed concentration and so balance the
growth raie.

The process tending to equalize these two fluxes is
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surface diffusion from A to B and, it we suppose n,
and ny to be the surface adsorbed concentrations of
molecules in regions A and B respectively, then we can
write this diffusion flux as essentially

Jap = Dslny—ng)mi/l 3)

where Dq is the surface diffusion coefficient for adsorb-
ed molecules and m the molecular mass.

The condition for non-dendritic growth is thus
simply J, = Jz or

Jya—JIyg = 2 ap. (4)
Using (1), (2) and (3) this becomes
wp!, —p)— P, —pp) = 2mDt* 73Dy (n'y —ny) , (5)

where the primes on the quantities p; and n; imply the
deviation of these quantities from their equilibrium
values under exactly saturated conditions.

It is clear that (5) is satisfied identically for p/, =0
and that since p'y, py < p’, it is possible to satisfy it
also for small values of p!, provided / is sufficiently
small. We need not be concerned with the details of
such a solution, which depend upon the exact relation
between the adsorbed concentration n; and vapour
density p} above the surface. If such a solution exists
for a given [ and r however, and the n; are proportional
to the related p; (as is the case for a simple adsorption
isotherm at low coverage), then a linearily scaled so-
lution also exists for any higher p,, for the same / and .

The relation between n} and p;| is, however, not linear
as p; increases. Rather, #} tends to saturate at a cover-
age near a monolayer {or perhaps in a rather more
complicated way). When this occurs, the relative in-
crease of the right-hand side of (5) with increasing
vapour pressure is less than that of the left side and the
equality can no longer be satisfied. There is, it is true, a
small margin of adjustment in p, and pg but, since they
are much less than p, , this is soon exhausted. Once (5)
can no longer be satisfied, the nett flux to the A regions
exceeds that to the B region and the corners begin to
grow more rapidly than the central parts of the crystal
edges.

In order-of-magnitude terms, if we put iy = i, the
monolayer coverage, and approximate sy = 0 and
Pas P < p.,. the criterion for dendritic growth then
becomes

p' > 2Dgn, mt¥iDya—p). (6)
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As pointed out before « and f are simple numerical
coefficients of order unity, determined by the geometry
of the crystal with « > f. It is clear from the depen-
dence of p/,, on/and f that a large thin crystal will make
the transition to dendritic growth at a smaller vapour
density excess than will a small thick crystal.

To evaluate the implications of (6) for ice, we note
that Dy ~ 02cm?s™ ", n ~ 10"5em™2, m ~ 3x 10723
g and a reasonable value for (x—f) for a hexagon is
~0.3. No reliable value for Dy appears to be available
in the literature but Coriell and Parker'?) take a typical
value as 1073 cm? s™ ',

Hobbs and Scott'®) have re-examined the step-
growth data of Hallett®) and of Mason et al.?) to
derive a value of 1.3x 107> cm? s~ ' for Dg on basal
faces of ice at —10 °C but the uncertainties in their
treatment are such that this estimate could well be in
error by more than an order of magnitude and, in any
case, Dg for prism faces is apparently much larger than
D for basal faces in the temperature range of our
present interest. We therefore adopt the value assumed
by Coriell and Parker for an illustrative calculation.

For a crystal 100 pm in diameter and 10 pm thick we
have / = 2.5%x 1073 cm, + = 107® cm and (6) predicts
dendritic growth when the vapour density excess
exceeds 0.2 g m~ 3. The good agreement between this
value and the observed threshold of 0.1 g m™? is
clearly fortuitous but the order of magnitude agree-
ment is significant. Tt is clear that surface diffusion of
adsorbed molecules is a very efficient stabilization
mechanism for growth morphology, at least an order
of magnitude better in this case than the mechanism
proposed by Coriell and Parker.

5. Sectorial and dendritic growth

It is not possible from this semi-quantitative discus-
sion to deduce any details of dendrite shape, but we can
make some qualitative speculations. We note that the
breakdown of stability is of a regional rather than a
local nature so that the morphology should develop
with a region of length about equal to the critical
length /* at the prevailing supersaturation advancing
fairly uniformly near each crystal corner. If a side is
longer than 2/*, a dip should develop near its midpoint.
This is essentially the character of sector-plate growth.

True dendritic growth could be thought of as a
limiting form of sectorial growth with very small 7*, but
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the experimental data suggest rather the sharp onset
of a different growth regime. There seem to be two
plausible mechanisms for this occurrence.

In the first place we note that, as the concentration
of adsorbed molecules tends to uniformity at high
vapour density excess, so the surface diffusion mechan-
ism in this uniform region becomes inhibited and the
stability problem reduces to the Mullins—Sekerka case.
Locai instabilities may then arise in this particular
region and give a different growth morphology.

Alternatively one might invoke the possibility of a
different interface growth mechanism becoming active
at high supersaturation. We have assumed a lateral
mechanism but, for sufficient vapour supersaturation
at the surface, a continuous advance with a rough
interface or two-dimensional nucleation could become
important. This mechanism would become active
initially at the crystal corners where local supersatura-
tion is highest and, by relieving this supersaturation,
would effectively inhibit similar growth at neighbouring
sites. A naive calculation of the required vapour density
excess for such a mechanism yields a value in rough
agreement with the observed dendritic threshold®).

This second mechanism of transition to true den-
dritic growth in ice crystals is in some ways similar to
that proposed recently by Lacmann and Siranski'®),
although their mechanism was expressed in terms
of the contact angle of an interfacial quasi-liquid film
to which they ascribed macroscopic physical proper-
ties.

6. Conclusion

This semi-quantitative discussion has shown that
surface diffusion of adsorbed molecules represents an
important stabilizing influence on crystal growth. In
the case of ice crystal growth, surface diffusion is
postulated as being of major importance and it has
been shown that this accounts for several features of
the dendritic growth of snow-tlakes.

The striking symmetry of snow-flakes is simply
explained by the considerable anisotropy of the surface
free energy and surface kinetics of ice, together with
the nature of the dendritic growth criterion (6) which
ensures that all six corners become dendritic essentially
simultaneously. The dependence of this growth criterion
on vapour density excess, together with the critical
behaviour of the true dendrite threshold, allows sensi-
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tive response of crystal morphology to the vapour
density in the environment.
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