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Baroque, classical, and modern flutes have successively more and larger tone holes. This paper
reports measurements of the standing waves in the bores of instruments representing these three
classes. It presents the frequency dependence of propagation of standing waves in lattices of open
tone holes and compares these measurements with the cutoff frequency: the frequency at which, in
an idealized system, the standing waves propagate without loss in such a lattice. It also reports the
dependence of the sound field in the bore of the instrument as a function of both frequency and
position along the bore for both simple and ‘‘cross fingerings’’~configurations in which one or more
tone holes are closed below an open hole!. These measurements show how ‘‘cross fingerings’’
produce a longer standing wave, a technique used to produce the nondiatonic notes on instruments
with a small number of tone holes closed only by the unaided fingers. They also show why the
changes from baroque to classical to modern gave the instruments a louder, brighter sound and a
greater range. ©2003 Acoustical Society of America.@DOI: 10.1121/1.1612487#

PACS numbers: 43.75.Ef, 43.75.Qr@NHF#
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I. INTRODUCTION

The tone holes of woodwind instruments are used
reduce the effective length of their bore. An open tone h
provides a low inertance shunt between the bore and
external radiation field so, at sufficiently low frequency, t
acoustic pressure inside the bore near an open tone ho
small. Consequently the bore behaves, at low frequenc
like a simple tube whose end is a little way beyond the fi
open tone hole. This extra length or end correction is f
quency dependent: at higher frequencies, the impedanc
the inertive shunt is larger, and so the standing wave in
bore propagates past the first open tone hole with an incr
ing relative amplitude as the frequency increases. As the r
tive amplitude of the standing wave propagating beyond
first open tone hole increases, the length of the end cor
tion increasingly depends upon whether tone holes fur
down the bore are open or closed. This allows what mu
cians call cross fingering: the closing of tone holes do
stream from the first open tone hole so as to change~usually
to flatten! the pitch of the note played. In older instrumen
cross fingerings are used in all registers. In modern orche
woodwinds, there is a tone hole for each semitone inte
and cross fingerings are principally used in the high regist
although they are also used in the other registers for p
and timbre adjustments and for contemporary techniq
such as multiphonics and microtones.

The tone holes of woodwind instrument became larg
in relation to the bore, from the baroque to classical to m
ern periods. This change was particularly pronounced in
flute. The larger tone holes had several effects: they made
instruments louder and brighter in timbre and they allow

a!This work has not previously been submitted for publication. A brief
count was presented at the International Congress on Acoustics, R
~2001!, ‘‘Tone holes and cross fingerings in wood wind instruments,’’
Smith and J. Wolfe, Session 8.09, pp. 14–15.

b!Electronic mail: j.wolfe@unsw.edu.au
c!Electronic mail: jrs@newt.phys.unsw.edu.au
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them to play higher notes. They also eliminated or redu
the use of cross fingering in all but the highest registe
These effects are explained below.

Many aspects of the acoustics of wind instruments
well understood, and reviews are given by Fletcher a
Rossing~1998!, Nederveen~1998! and others. The effects o
individual tone holes have been studied in detail theoretic
~Duboset al., 1999; Keefe, 1982a; Stronget al., 1985; Ned-
erveen et al., 1998! and experimentally~Coltman, 1979;
Keefe, 1982b!. Benade~1960, 1976! derives approximate
theoretical expressions for the cutoff frequency of an array
open tone holes: the frequency above which the stand
waves propagate significantly past the first open tone h
~see Sec. III!. He also explains how the frequency-depend
propagation past a single open tone hole allows cross fin
ing to flatten the pitch, and why the effect is greater in t
second register than in the first.

Figure 1 is a sketch of two of the standing waves in t
spirit of Benade’s description.@Figure 1~a! combines features
of Figs. 21.1, 21.10 and 22.12 in Benade~1976!.# The pres-
sure of the standing wave does not fall to zero at the fi
open hole, because the inertance of the air in the open ho
not zero. Rather, it penetrates into the lattice, where i
attenuated along the bore. Extrapolating the standing w
past the open hole gives the end effect. Because the im
ance of the open tone hole is greater at higher frequency
standing wave pressure at the open hole is greater, so hi
modes propagate further into the lattice and so have a la
end effect. Figure 1~b! is an analogous sketch for a cro
fingering, showing the larger end effect due to the low
attenuation under the closed tone holes.

Benade’s explanations are in good qualitative agreem
with the observed effects on real instruments. However,
know of no experimental studies of the end effects in mus
instruments that examine the standing waves as function
both position and frequency.

The purpose of the current study is to measure th
standing waves in examples of flutes from different eras

-
me
2263263/10/$19.00 © 2003 Acoustical Society of America
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in particular to measure their propagation beyond the fi
open tone hole, and how it varies with frequency. We a
measure the effects of cross fingering and show some o
effects produced when the size of tone holes is changed
chose flutes from the baroque, classical, and modern era
the modern flute, the ratio of tone hole diameter to b
diameter approaches the upper practical limit. In the baro
flute, the diameter ratio is smaller by a factor of nearly 2. T
classical instrument has intermediate parameters. For
three instruments studied, acoustic impedance spectra
sured at the embouchure and sound files and spectr
played notes have been published previously~Wolfe et al.,
2001a!.

FIG. 1. ~a! is a sketch, after Benade~1976!, of the acoustic pressurep of the
standing waves for the first two harmonics in the bore of a flute for a sim
fingering. ~b! shows an analogous sketch for a cross fingering. The do
line indicates the standing wave in a simple tube with a length that gives
same resonant frequency as the flute with this fingering.
2264 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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II. MATERIALS AND METHODS

A. The instruments

The modern flute is a production line instrument~Pearl
PF-661, open hole, C foot!, the same instrument studied pr
viously ~Smith et al., 1997; Wolfeet al., 2001b!. The classi-
cal and baroque flutes were reproductions made by T. Mc
of Canberra, Australia. The classical instrument is based o
large-hole Rudall and Rose~R&R #655 from the Bate col-
lection in Oxford! but has been rescaled to play at
5440 Hz. The baroque flute is an unscaled replica of
instrument made by J. A. Crone in Leipzig in about 1760
plays at A5415 Hz. The measurements were made at ro
temperature and humidity~for the different instruments
measured on different days, this varied from 21 °C to 26
and 53% to 58% relative humidity, values lower than tho
in an instrument under playing conditions!. The modern
Boehm flute is nearly cylindrical, but the head joint tapers
be slightly narrower at the embouchure end. The class
and baroque flutes have cylindrical head joints and appr
mately conical bodies, narrowing towards the foot. The co
angle is greater in the baroque flute, so its bore is on ave
smaller than that of the classical instrument, which is in tu
narrower than that of the modern flute. Table I gives some
the dimensions of the three instruments.

B. Measurement of impedance and standing waves

The measurements of acoustic impedance were mad
described previously~Smith et al., 1997; Wolfe et al.,
2001b!. The reference for calibration was a semi-infinite c
lindrical waveguide, whose impedance was assumed to
real and to have a value given byrc/S, where r is the
density of air,c is the speed of sound andS is the cross-
sectional area. A compromise is made among freque
range, frequency resolution, and dynamic range. For the
periments measured over the range 0.2 to 3 kHz, the
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TABLE I. A table of sizes of holes, positions of their centers, and bore diameters for the three flutes st
The key naming convention gives numbers to the three long fingers of each hand or the name of the note
when the key is closed. The holes ‘‘tr2’’ and ‘‘tr1’’ are used for trills and as register holes on the Boehm
‘‘emb’’ refers to the embouchure hole, and its stated diameter is that of a circle having the same area.

Hole

Baroque Classical Modern

Diameter Bore Position Diameter Bore Position Diameter Bore Positi

cork 18.2 218.2 19.0 217.5 15.7 217.5
emb 8.5 18.2 0 11.1 19.0 0 11.5 17.5 0
tr2 8.0 19.0 201.0
tr1 7.7 19.0 218.3
1 6.6 16.4 229 7.7 17.1 230 7.0 19.0 234.8
B 5.5 16.8 249 13.2 19.0 267.2
A] 13.2 19.0 286.7
2 6.4 15.8 267 10 16.5 268 13.2 19.0 307.4
3 5.4 15.3 304 7.5 15.8 303 13.2 19.0 330.6
G 13.3 19.0 352.8
F] 14.2 19.0 377.3
1 5.5 14.6 363 9.0 14.6 361 14.2 19.0 402.9
2 5.6 14.0 398 10.9 14.0 393 14.2 19.0 430.3
E 8.0 13.9 412
3 4.5 13.3 435 6.4 13.1 429 14.2 19.0 459.0
D 6.2 12.1 497 11.6 12.4 478 15.5 19.0 490.6
C] 12.3 11.7 514 15.5 19.0 524.2
C 9.7 11.0 548 15.5 19.0 557.8
J. Wolfe and J. Smith: Cutoff frequencies and cross fingerings



s that can be
FIG. 2. A schematic of the technique we used to measure the standing waves, with a broad band acoustic current source and probe microphone
placed at the embouchure or at closed or open tone holes. The details at the embouchure are enlarged in the sketch at left.
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quency spacing was 2.5 Hz. For those over the range 0.
12.5 kHz, the frequency spacing was 10 Hz.

The calibration procedure for measurements of
standing wave in the bore was as follows~Fig. 2!. An acous-
tic current was synthesized from frequency compone
ranging from 0.2 to 3 kHz in 2.5-Hz increments. This w
input to the embouchure hole via a short pipe of diameter
mm with a length~6 mm! that was chosen so that its impe
ance approximates the radiation impedance that norm
loads the instrument at this point when it is played~Smith
et al., 1997; Wolfe and Smith, 2001!. The effect of this im-
pedance may be removed using the transfer matrix for a
lindrical waveguide, and this has been done for the hi
frequency measurements reported in Fig. 3, which aims
explain the shape of the impedance spectrum rather tha
predict playing frequencies. For the other figures, it has b
included. Fletcher and Rossing~1998! analyzed the momen
tum of the region in which the air entering from the jet mix
with the air in the bore and concluded that the embouch
radiation load impedance is effectively in series with the i
pedance of the bore when it acts on the jet. A probe mic
phone, outer diameter 1 mm, was placed on the upstr
side of this short pipe, at the position of the acoustic curr
source. The pressure spectrum at this point was meas
and the spectrum of the output acoustic current was adju
so that the pressure signal measured by this microphone
independent of frequency.

To maintain the same geometry after calibration,
original probe microphone located at the embouchure
replaced with a second microphone of the same type.
original probe microphone was now used to measure
sound pressure in the bore via the tone holes. Because
report only ratios of the pressure in the bore to the pressu
the embouchure, and these have been both measured

FIG. 3. The input impedance spectrum~in MPa.s.m23 or MV! of a modern
flute for the fingering used to play C]5 and C]6. The upper inset shows
fingering diagram such as a flutist would recognize. The lower inset sh
a schematic of the keys. For these notes, all tone holes are open exce
two small trill or register keys and one of two similarly placed holes that
used as alternates.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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the same microphone, any intrinsic frequency dependenc
the microphone response will cancel.

In order to perturb minimally the system under study, w
used a probe microphone with a small outer diameter~1
mm!. However, the frequency response of a long probe
crophone with a small diameter decreases rapidly when
length is increased because of viscous losses. This impos
short upper limit on the useful length of the probe micr
phone, and makes it difficult to insert usefully along the a
of the instrument. For this reason, measurements were
taken at tone holes. The tone holes are separated by a
cm, which is rather smaller than the wavelengths studied
this spacing is adequate for the study. When the tone h
were closed~either by stoppers made to size, or by keys w
central holes into which stoppers were inserted!, the probe of
the microphone was passed through a hole along the ax
the stopper. In all cases, the end of the probe microph
was on the axis of the bore.

C. Measurement of pitch

To measure the pitch change produced by cross fin
ings, three experienced flutists were asked to play each o
flutes, with each fingering, in each of two registers. Th
were told that the fingerings were not standard, and that t
played at various pitches between about F4 and G4 in
first register and F5 and G5 in the second. They were as
to blow normally~mezzo forte! for a note in the first registe
and then to blow normally~mezzo forte! for a note in the
second register. For these measurements, the temperatur
humidity of the air were presumably rather higher than a
bient, but this was not measured. For each flutist/fingeri
register combination, three examples were recorded usin
digital tape recorder. The fundamental frequency was de
mined from a digital Fourier transform, with windows of 216

points, sampling at 44.1 kHz, and averaging over one
more seconds.

III. RESULTS AND DISCUSSION

The physical measurements are made at room temp
ture and humidity, rather than at the elevated temperatu
and humidities of playing conditions, so the speed of sou
is expected to be about 1% less than that under playing c
ditions. The baroque flute is tuned to A5415 Hz, so it plays
about one semitone~6%! flatter than the classical and mod
ern instruments. This study, however, is primarily concern
with the relative pitch changes due to cross fingering or
tween registers, rather than with absolute pitch.

A. Input impedance spectrum of the flute

Figure 3 shows the input impedance spectrum fo
modern flute, for a fingering in which all of the tone hole

s
for

e
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that are normally used are open. In this plot only, the rad
tion impedance at the embouchure is not included. This
gering is conventionally used to play C]5 and C]6 ~554 and
1108 Hz!, with the player changing embouchure and
speed to select the note. It can also play G]6 ~1661 Hz!, so
it plays the first three notes in a harmonic series, which c
respond to the first three minima inZ( f ), approximately
equally spaced by 550 Hz. These correspond to resona
of a length of bore about half the length of the flute. This
a little more than the distance to the first open hole, bey
which the standing wave is attenuated strongly. The re
nances associated with this harmonic series become we
with increasing frequency because of increasing vis
thermal losses at the walls.

We show in the next section that the calculated cut
frequencyf c for this instrument is about 2 kHz. At frequen
cies well above that of the cutoff, the frequency spac
between minima is 270 Hz. These resonances correspon
standing waves along the whole length of the instrument~see
especially between 7 and 12 kHz!. At such high frequencies
the inertive reactance of the tone holes is so high that
standing wave propagates along the tone hole lattice alm
as though the tone holes were closed. This effect is s
more clearly in instruments with lowerf c ~discussed later
Figs. 4 and 5!.

Above about 3 kHz, the resonances of the bore beco
rather weak. This can be explained qualitatively by say
that they are effectively in parallel with a Helmholtz reson
tor formed by the air in the embouchure hole~the mass! and
the volume of air that lies between that hole and the sea
end of the flute~the compliance!. The expected frequency o
this Helmholtz resonator is of the order 3 kHz~the value is
approximate because the wavelength is no longer very m
larger than the dimensions of the air forming the comp
ance!. The broad maximum between 7 and 11 kHz may c
respond to the resonance of the air in the embouchure r
This is a truncated cone, 5 mm long. A waveguide model
a flanged, truncated cone with this length and the radi
Table I has a broad maximum of about 10 MV at around 9.5
kHz.

B. Cutoff frequencies

Benade~1976! applied transmission line theory to th
section of bore with open tone holes, and derived the follo
ing approximate expression for the ‘‘cutoff’’ frequencyf c of
this ‘‘open tone-hole lattice:’’

f c50.110
b

a
•

v

As•te

, ~1!

where b and a are the radii of the tone hole and the bo
respectively,v is the speed of sound,s is half the distance
between the centers of adjacent tone holes, andte is the
effective length of the tone hole, being approximately
geometric length plus 1.5b. In this model, waves with fre-
quencies belowf c will be attenuated as they propagate alo
the lattice. However, frequencies abovef c will propagate
through the lattice essentially without loss.
2266 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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The three instruments studied have different size bo
and tone holes, so the cutoff frequencies of the lattice
open tone holes are different: lowest for the small-holed
roque flute and highest for the modern instrument. For
baroque and classical flutes, in which adjacent holes usu

FIG. 4. The effects of the filtering by the open hole lattice, for the th
instruments studied. The measured impedance spectrumZl of the lowest
note is indicated by the faint dots that form an almost continuous l
Superimposed are the extrema of the impedance spectra for all simple
gerings~large dots!. Cutoff frequencies calculated from Benade’s appro
mate expression are shown. In practice, the cutoff frequency varies f
hole to hole, so means and standard deviations are shown.
J. Wolfe and J. Smith: Cutoff frequencies and cross fingerings
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FIG. 5. The upper figures show the sound pressure spectrum in the center of the bore of a baroque flute~left! and a modern instrument~right! for the fingering
XXX-OOO for the note G4 or G5. Results are expressed aspbore/pemb. Different curves were obtained on the bore axis at the positions of different tone h
as indicated by the numbers on the curves and on the sketch of the instruments. The lower figures show the acoustic impedance spectra mea
embouchure for these fingerings. The scale bar at the upper right of the figure for the baroque flute indicates the harmonic spacing of resonancestire
bore. ~To allow closer inspection, the individual curves that superpose here are printed separately at http://www.phys.unsw.edu;jw/
Crossfingeringfigures.pdf!.
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have different sizes, the cutoff frequency also depends u
the fingering. Some typical values are given in Table II.

The cutoff frequency predicted by Eq.~1! has been
widely and successfully used. Due to approximations in
model Benade used, however, one would expect it to bec
increasingly imprecise around the cutoff frequency. T
transmission line theory used assumes an infinitely long
tice with distributed or continuous components, whereas
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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real instrument the tone holes and their separation are
finite size. In the waveguide model the dimensions of
elements in the lattice of open tone holes are always m
smaller than the wavelength but this is not the case for
real instrument. Further, the model will not be applicable
sections of bore with a small number of tone holes of diff
ent size at higher frequencies. Accordingly we present in
Appendix a derivation of Eq.~1! for tone holes of finite size
For the
modern
TABLE II. Values for the cutoff frequency, calculated using Benade’s expression, Eq.~1!, and typical values of
the relevant parameters. The effective length of the tone hole includes an end effect at each end.
classical flute, only the tone holes used in the diatonic scale are included in the means. For the
instrument, all holes except the trill holes are included.

Flute
Bore radius

a
Tone hole
radiusb

Tone hole
length t

Effective
length te

Interhole
spacing 2s

Cutoff frequency
f c /Hz

baroque 7.561.7 2.860.3 5 9.261 41610 10306300
classical 7.561.5 4.361.1 5 11.561 40610 14306500
Boehm 9.560 6.761.1 2.5 12.661.2 2765 20506400
2267J. Wolfe and J. Smith: Cutoff frequencies and cross fingerings
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and spacing, and some calculations of the impedance
gain of an open tone hole lattice using a simple empiri
model.

The cutoff frequency is one of several effects that de
mine the envelope of the impedance spectra of the flute.
each of the three instruments, the data for all possible sim
fingerings~i.e., fingerings that are not cross fingerings! are
summarized in Fig. 4. The extrema become successi
weaker with increasing frequency, in part because of gre
wall losses at high frequency, and in part because the
upstream from the embouchure hole acts as the reservoir
Helmholtz resonator in parallel with the bore. This is se
most clearly in the impedance spectrumZ1 for the fingering
for the lowest note, in which there are no open tone ho
~The complete impedance spectrum is shown for this fing
ing only.! For all other simple fingerings, there is a lattice
open tone holes, and the extrema become weak at a
quency near the calculatedf c .

For the baroque and classical flutes, for frequenc
above the calculatedf c , the extrema ofZ for simple finger-
ings have an envelope similar to that ofZ1 . On the baroque
flute, above about 2 kHz, the extrema of simple fingerin
tend to cluster near those ofZ1 . In other words, for frequen
cies well abovef c , all fingerings behave approximately a
though all holes were closed! This effect is successively
noticeable on the classical and modern flutes, whose
holes are successively bigger and more numerous, and th
fore less negligible, even at high frequency.

C. Standing waves for simple fingerings

To illustrate the effects of cross fingering, we chose o
simple and one cross fingering for detailed study.@Measure-
ments for other fingerings are given by Wolfeet al. ~2001a!.#
The simple fingering chosen was that for the note G,
which the tone holes or finger holes controlled by the l
hand are closed and those for the right hand are open. Th
often represented by wind players as XXX-OOO, the ch
acters representing the three largest fingers of the two ha
X being closed and O being open. This choice of finger
allows us to measure the standing waves in both the o
and closed parts of the bore, via the finger holes. On
instruments, this is the standard fingering for G4 and G5

The effect of the cutoff frequency can be seen in b
the impedance spectrum and in the standing wave spect
notes with simple fingerings. Figure 5 shows these spe
for the modern and baroque flutes for the fingering XX
OOO, used on both instruments for G4 and G5. The imp
ance spectra are measured at the embouchure hole an
clude an impedance representing the embouchure radia
impedance, as described above. The standing wave sp
are measured at the tone holes. Only one spectrum meas
inside the closed region of the bore is shown, so as no
complicate the figure further.

Below f c , the flute behaves approximately as an op
tube terminated at the position of the first open hole, plus
end correction which increases with frequency because o
greater penetration into the open tone hole lattice by
waves with higher frequency. Belowf c , the impedance
minima and the peaks in the standing waves are appr
2268 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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mately harmonically related. This is shown in the figures
the arrows, which have been drawn at harmonics of the f
damental frequency. For the baroque flute, the first two re
nances fall belowf c . For the modern instrument, the firs
five resonances fall belowf c . On the modern instrument, th
fingering for G4 can be overblown to sound G5, D6, G6, a
B6 with intonation error less than the variability among pla
ers. The classical flute~data not shown in this figure, but se
Figs. 4 and 6! has intermediate cutoff frequency and inte
mediate behavior: the first four impedance minima are
proximately harmonic.

The increase in cutoff frequency from baroque to cla
sical to modern has important consequences for the so
produced. For most fingerings, the higherf c increased the
number of impedance minima that are in nearly harmo
ratios and thus the number of resonances that interact
harmonics of the air jet to produce the spectrum of the n
played. For the same note and dynamic level, the so
spectra of the more recent instruments are richer in hig
harmonics @spectra given in Wolfeet al. ~2001b!#. This

FIG. 6. The sound spectrum in the center of the bore of a classical flute
the fingering XXX-OOO for the notes G4 or G5. Results are expresse
pbore/pemb, the ratio of measured pressures at positions in the bore to th
the embouchure. Different curves were obtained on the bore axis a
positions of different tone holes, as indicated by the numbers on the cu
and the sketch. They therefore represent displacement along the bo
positions given by Table I. The numbered horizontal dashes are adde
show the maxima of the superposed curves.
J. Wolfe and J. Smith: Cutoff frequencies and cross fingerings
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makes them ‘‘brighter’’ in timbre, and also considerab
louder, because, for most of the range of the flute, the hig
harmonics fall in a range where the ear is more sensitive t
it is to the fundamental frequency.

At frequencies somewhat higher thanf c , the impedance
of the open tone holes becomes sufficiently high that
wave propagates past them all the way down the bore.
resonances in this frequency range are therefore stan
waves along the entire length of the instrument. Hen
above about 1.4 kHz for the baroque flute, the standing w
peaks and the impedance minima are approximately equ
spaced in frequency, but the spacing is smaller. The ave
difference in frequency between the last six impeda
minima is 278 Hz, which is similar to the frequency of th
lowest note of the baroque flute~277 Hz: D4 in baroque
tuning with A5415 Hz). For the modern flute at frequenci
above about 2.5 kHz, the minima are also more clos
spaced, but the resonances are weak at these frequencie~cf.
Figs. 3 and 4!.

The various features of the standing waves are m
clearly seen in the classical flute, which has an intermed
number of tone holes, of intermediate size. Data for the
gering XXX-OOO are shown in Fig. 6. At this stage, w
restrict discussion to frequencies below the cutoff, which
this fingering on this instrument is about 1.6 kHz~discussed
below!.

Figure 6a shows the decay of the standing waves in
lattice of open tone holes. The pressure amplitude falls
several dB from one open hole to the next. This can
analyzed with a model in which the sections of bore
treated as waveguides and the tone holes as discrete
ments. Using such a model, and using the typical value
Tables I and II, the attenuation between adjacent open h
is of order 10 dB and depends in a complicated way
frequency~see the Appendix for a calculation!. The actual
value varies from hole to hole, because of the nonunifo
bore and hole size. For instance, the sixth hole is small
the seventh large, so the attenuation from hole 5 to 6 is
than that from hole 6 to 7. For the most distant open hole~8
and 9!, the measured attenuation is less strong. The inten
in the bore here is comparable with that of the external so
field. Near and above the cutoff frequency, the spectra
complicated and there is no simple dependence upon p
tion. The simple model fails in this region because the sta
ing waves penetrate further and more closely approach
resonances of the complete tube, as discussed below.

Notice that, at frequencies below the cutoff, the press
amplitudes of the resonances measured at hole 4~the first
open hole in the lattice! are of approximately equal ampl
tude. This is because the input acoustic current spectrum
been adjusted to produce equal pressure amplitude a
embouchure hole. At the subsequent open holes~5,6,7!, the
pressure signal increases with frequency because of gr
penetration into the lattice.

In the closed part of the bore@Fig. 6~b!#, the behavior
below the cutoff frequency has some complications that
explained in terms of the standing waves of the first f
resonances. One expects the pressure amplitude to fall m
tonically in the last quarter wavelength upstream from
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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first open hole. This is observed: for the first resonancel
>870 mm), the amplitude falls monotonically from holes
to 4 ~131 mm!. For the higher resonances, this length
greater thanl/4, and so the pressure variation is not mon
tonic. On this flute, hole 1 can be used as a register hol
produce a note near the third harmonic, D6, and hole 2
be used as a register hole to produce a note near the fo
harmonic, G6.~A register hole is one that is opened to allo
standing waves with nodes near its position, but to disall
lower frequency resonances. It thus selects notes in hig
registers, whence the name.! At hole 1 ~register hole for the
third resonance!, the third resonance has a low value
sound pressure and a discontinuity. Similarly at hole 2~reg-
ister hole for the fourth resonance!, the fourth resonance ha
a low value of sound pressure and a discontinuity.

Most of the spectra from different positions show stro
peaks at the first four harmonics of the note G4, correspo
ing to standing waves with half wavelengths equal to integ
fractions of a length equal to the distance from the emb
chure hole to the first open hole plus about 80 mm~i.e., the
length of the closed tube, plus end effects for the emb
chure and for the tone hole lattice!. The frequencies of thes
peaks correspond, to within 2 Hz, to the minima in t
acoustic impedance spectrum measured at the embouc
The flute can be blown to play notes with these frequenc
Intervening frequencies do not generate strong stand
waves with this fingering~and the flute cannot be played
these frequencies without making large changes to the
effects!. The good approximation to harmonic ratios m
seem surprising, because the end correction in the tone
lattice is expected to be frequency dependent. The close
volume upstream from the embouchure and the shape o
bore are responsible for ‘‘correcting’’ this frequency depe
dence, and others related to playing technique~Benade,
1959; 1976; Fletcher and Rossing, 1998!.

D. Standing waves for cross fingerings

There is no cross fingering that is equally similar acro
all three instruments. For the cross fingering, we ch
XXX-OXX, which is discussed below. Results for the simp
fingering XXX-OOO and the cross fingering XXX-OXX ar
compared in Fig. 7. The fingering XXX-OXX on the baroqu
flute plays a sharp F]4 ~for which it is an alternative finger-
ing!: i.e., closing the additional holes lowers the pitch
about half of an equal tempered semitone. Overblown
plays approximately F5, i.e., about two semitones flatter t
the XXX-OOO fingering. The note is unstable and difficu
to play. On the classical instrument this fingering plays
about a quarter of semitone flat, and G5 about half a se
tone flatter than the XXX-OOO fingering. The Boehm flu
has more tone holes and it also has key linkages that are
present on the other instruments. The fingering XXX-OX
engages a clutch that closes the F] key. The cross fingering
effect alone lowers the pitch by about 15 and 30 cents in
first and second registers, respectively.~See Table III.! In all
flutes, the cross fingering produces notes in the third regi
in which the open hole operates as a register hole, so c
siderations of the cross fingering end effect are not relev
2269J. Wolfe and J. Smith: Cutoff frequencies and cross fingerings
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FIG. 7. Acoustic pressure in the bore for simple~left! and cross fingerings. The vertical axis ispbore/pemb ~linear scale!: the ratio of pressure to that measure
at the embouchure. Positions are measured with respect to the position of the first open hole and are shown in both mm~lower axis! and in fractions of a
wavelength of the fundamental or lowest resonance~upper axis!. The figures on the left show the simple fingering XXX-OOO and those on the right s
XXX-OXX. The curve with the squares and heaviest line weight is that of resonance with the lowest frequency. The other curves are for next five res
in increasing frequency.~The frequencies in Hz are given in the inserts.! The sketches of the instruments are drawn to scale in the horizontal direction s
the holes used to make the measurement line up with the data. Lines between data are a guide for the eye only.
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The pressure at the peaks of the spectra measured a
tone holes~curves including those in Figs. 5 and 6! is plotted
in Fig. 7 as a function of the position of the holes throu
which they were measured. The first few resonances—th
2270 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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se

falling below the cutoff frequency for each instrument—a
very nearly in a harmonic series~two harmonics for the ba-
roque, four for the classical, and five for the modern!. For the
simple fingering XXX-OOO, the shape of the fundamen
J. Wolfe and J. Smith: Cutoff frequencies and cross fingerings
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wave is simple: it decreases monotonically with distan
along the bore, and is very small in the lattice of open to
holes. Attenuation in the open tone hole lattice is greates
the modern instrument, which has larger holes, and leas
the baroque instrument, as expected. For the modern in
ment, the higher resonances also behave much as expe
These resonances have nodes in the closed part of the
so these curves are not monotonic: for example, the stan
wave for the fourth resonance has a node near the ho
290 mm@See also Fig. 6~b! and the explanation in the pen
ultimate paragraph of section C.#

For the classical and baroque instruments, the gre
penetration into the open keyhole lattice results in a com
cated pattern, even for the simple fingering. For the baro
instrument, the fifth and higher resonances approximately
semble harmonic standing waves over the full length of
tube@as shown in Fig. 6~b!#. For the baroque flute, the pre
sure at the last hole downstream is comparable with tha
the field outside the instrument.

For the cross fingering, the standing wave of the low
resonance is substantially terminated by a single open ho
all instruments: the wave falls to a small amplitude at
open hole and its amplitude decreases almost monotonic
in the downstream closed section. These curves resembl
sketch given by Benade~1976! to explain the effects of cros
fingering.

For the modern flute, the second resonance also
monotonically beyond the first open hole, but the thi
fourth, and fifth all show local maxima inside the dow
stream tube. The third resonance plays a slightly flat
~with a little difficulty!, the fourth resonance a sharp F]6.
For these cases, the open hole may be considered to ac
register hole. When the open hole is closed, the fingerin
that for D4, whose fourth and fifth harmonics are near
and F]6. In the cross fingering shown, the open hole is
tween one-quarter and one-fifth of the way along the p
and thus the third and fourth standing waves of the cr
fingering are closely related to the fourth and fifth resonan
of the fingering for D4. All of these resonances may
played with the cross fingering, although the third is n
stable.

For the classical and baroque flutes, all standing wa
except the first increase in amplitude downstream from
open hole, and the third and higher resonances are simil
the fourth and higher harmonics of the D4 fingering: f
these notes the open hole is sufficiently close to a pres
node and/or its inertive reactance is sufficiently high that
being open makes relatively little difference to the stand
wave.

IV. CONCLUSIONS

The cutoff frequency of the instruments increases,
expected, with increasing tone hole diameter. Above the

TABLE III. The pitch change, in cents6standard deviation, due to the cros
fingerings shown in Fig. 7. One equal tempered semitone5100 cents.

Baroque Classical Modern

First resonance 250620 22565 21565
Second resonance 2215620 25565 23065
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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off frequency, the standing waves penetrate strongly past
open tone hole. In the case of the instrument with the sm
est holes~baroque flute!, the standing waves above the cuto
frequency are little affected by the open holes and are c
to the expected resonances for the complete length of
instrument, with all tone holes closed. With larger holes,
increasing cutoff frequency gives a larger number of imp
ance minima that are in approximately harmonic ratio. T
is expected to contribute to the production of notes that
brighter in timbre and louder.

Below the cutoff frequency, the standing wave prop
gates past the first tone hole by an amount that increases
frequency and that decreases with increasing tone hole d
eter. For both the cutoff frequency and the attenuation in
tone hole lattice, the observed values are in agreement
those of a simple empirical model. The observed behavio
the standing waves explains the observed effects of c

FIG. 8. The theoretical variation of the gain at the start of the tone h
lattice as a function of frequency for three different types of flute. This g
is defined as the ratio of the internal pressure at the second open tone h
that at the first open tone hole. In this and in Fig. 9, the vertical arro
indicate the average value of the cutoff frequency calculated using dim
sions for the first two open tone holes, for each instrument.

FIG. 9. The theoretical variation of the impedance downstream of the
open tone hole as a function of frequency for three different types of fl
Each curve has been normalized with respect toZrad, the radiation imped-
ance for an unbaffled aperture with a diameter equal to that of the bore.
Zrad is the impedance that would be measured if the flute were physic
‘‘cutoff.’’
2271J. Wolfe and J. Smith: Cutoff frequencies and cross fingerings
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fingering on the playing frequency and the impedance sp
tra for the different instruments and different registers.
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APPENDIX: THE CHARACTERISTIC FREQUENCY OF
AN INFINITE TONE HOLE LATTICE WITH FINITE
COMPONENTS

Two successive open tone holes in an infinite, cylind
cal bore are separated by a distanceL. Looking downstream
from one open tone hole, the acoustic impedance is given
the four terminal expression~Fletcher and Rossing, 1998!:

Zin5Zo

ZL coskL1 jZo sinkL

jZL sinkL1Zo coskL
,

whereZo is the characteristic impedance of the bore,ZL is
the load impedance present at the next tone hole and o
symbols have their usual meaning. Using lower casez for
impedances nondimensionalized by dividing byZo , this be-
comes

zin5
zL1 i tankL

jzL tankL11
.

If the bore has radiusa and the tone hole radiusb, then the
nondimensional radiation impedancezhole at the tone hole is

zhole5 j
b2

a2 tankte[ jR tankte ,

where R[b2/a2 and te is the effective length of the ton
hole when the radiation impedance is considered.

zL is the impedance ofzhole in parallel with the imped-
ance of the bore beyond the hole. As the array is infinite,
latter impedance iszin , so

zin5
zinzhole1 j ~zin1zhole! tankL

jzinzholetankL1~zin1zhole!
.

Rearrangement gives a quadratic equation whose solutio

zin5 j tankL
16A114R tankte /tankL24R2 tan2 kte

2~12R tankte tankL!
.

If te50, the tone hole is a short circuit andzin5 j tankL, so
we reject the solution with the negative sign.

In the cases of interest,kte!1. kL is on the order of 1
for the characteristic frequencies, so tankL;kL, so

zin; jkL
11A114~a/b!2te /L24~a/b!4k2te

2

2~12~a/b!2k2teL !
.

Becausete,L, the lower characteristic frequency is defin
by (a/b)2k2teL51, which gives

f c;
1

2p

b

a

c

AteL
>0.11

b

a

c

Ates
,
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wheres5L/2. This is the same expression that Benade
rives using transmission line theory.

Both the Benade model and the analysis given above
at high frequencies. The behavior over the whole freque
range of interest may be determined explicitly using fo
terminal elements to represent the sections of the bore
tween tone holes. Calculations were made using an empi
model that relates the geometric parameters of the flute t
measured impedance~Botros et al., 2002!. Although this
model was originally developed for the modern flute, w
have also arbitrarily used it for the classical and baroq
flutes, altering the bore and tone hole diameters appro
ately. For simplicity the effects of energy losses along
bore have not been included in the results presented h
Figure 8 shows the calculated variation of acoustic press
from one tone hole to the next. Figure 9 shows the calcula
frequency dependence of the lattice. In the case of the
roque flute, the acoustic impedance above the cutoff
quency shows a regular series of maxima and minima, ra
similar to that of a simple pipe. As observed above, in re
tion to Figs. 4 and 5, this is because the tone holes behav
though they were closed at these frequencies and so
downstream impedance does indeed approximate that
simple pipe.
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