LM158/LM258/LM358/LM2904
Low Power Dual Operational Amplifiers

General Description
The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.

The LM358 is also available in a chip sized package (8-Bump micro SMD) using National’s micro SMD package technology.

Unique Characteristics
- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

Advantages
- Two internally compensated op amps
- Eliminates need for dual supplies
- Allows direct sensing near GND and V_{OUT} also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation
- Pin-out same as LM1558/LM1458 dual op amp

Features
- Available in 8-Bump micro SMD chip sized package, (See AN-1112)
- Internally frequency compensated for unity gain
- Large dc voltage gain: 100 dB
- Wide bandwidth (unity gain): 1 MHz (temperature compensated)
- Wide power supply range:
 - Single supply: 3V to 32V
 - or dual supplies: ±1.5V to ±16V
- Very low supply current drain (500 µA)—essentially independent of supply voltage
- Low input offset voltage: 2 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing: 0V to V⁺− 1.5V

Voltage Controlled Oscillator (VCO)

![Diagram of Voltage Controlled Oscillator (VCO)](DS007787-23)
Absolute Maximum Ratings (Note 9)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V⁺</td>
<td>32V</td>
<td>26V</td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>32V</td>
<td>26V</td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.3V to +32V</td>
<td>−0.3V to +26V</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (Note 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molded DIP</td>
<td>830 mW</td>
<td>830 mW</td>
<td></td>
</tr>
<tr>
<td>Metal Can</td>
<td>550 mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Outline Package (M)</td>
<td>530 mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>micro SMD</td>
<td>435mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short-Circuit to GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(One Amplifier) (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V⁺ ≤ 15V and Tᵥ = 25°C</td>
<td>Continuous</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Input Current (Vᵢᵣ < −0.3V)</td>
<td>50 mA</td>
<td>50 mA</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM358</td>
<td>0°C to +70°C</td>
<td>−40°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>LM258</td>
<td>−25°C to +85°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM158</td>
<td>−55°C to +125°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Soldering, 10 seconds)</td>
<td>260°C</td>
<td>260°C</td>
<td></td>
</tr>
<tr>
<td>Lead Temperature, Metal Can</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Soldering, 10 seconds)</td>
<td>300°C</td>
<td>300°C</td>
<td></td>
</tr>
<tr>
<td>Soldering Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual-In-Line Package</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering (10 seconds)</td>
<td>260°C</td>
<td>260°C</td>
<td></td>
</tr>
<tr>
<td>Small Outline Package</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Phase (60 seconds)</td>
<td>215°C</td>
<td>215°C</td>
<td></td>
</tr>
<tr>
<td>Infrared (15 seconds)</td>
<td>220°C</td>
<td>220°C</td>
<td></td>
</tr>
<tr>
<td>See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Tolerance (Note 10)</td>
<td>250V</td>
<td>250V</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics

V⁺ = +5.0V, unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM158A</th>
<th>LM358A</th>
<th>LM158A/LM258A</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 5), Tᵥ = 25°C</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>Iᵢᵣ₊ or Iᵢᵣ₋, Tᵥ = 25°C, Vᵥᵣ = 0V, (Note 6)</td>
<td>20</td>
<td>50</td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>Iᵢᵣ₊ − Iᵢᵣ₋, Vᵥᵣ = 0V, Tᵥ = 25°C</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Input Common-Mode Voltage</td>
<td>V⁺ = 30V, (Note 7)</td>
<td>0</td>
<td>V⁺ = −1.5</td>
<td>0</td>
<td>V⁺ = −1.5</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>(LM2904, V⁺ = 26V), Tᵥ = 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Rᵥ = ∞ on All Op Amps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V⁺ = 30V (LM2904 V⁺ = 26V)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>V⁺ = 5V</td>
<td>0.5</td>
<td>1.2</td>
<td>0.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

www.national.com 2
Electrical Characteristics

$V^+ = +5.0V$, unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM358</th>
<th>LM2904</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>$V^+ = 30V$, $T_A = 25^\circ C$</td>
<td>0</td>
<td>$V^+-1.5$</td>
<td>V</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>$V^+ = 30V$, $T_A = 25^\circ C$, $V_{CM} = 0V$</td>
<td>0</td>
<td>$V^+-1.5$</td>
<td>V</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$V^+ = 30V$, $T_A = 25^\circ C$, $V_{CM} = 0V$</td>
<td>0</td>
<td>$V^+-1.5$</td>
<td>V</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 30V$, $T_A = 25^\circ C$</td>
<td>0</td>
<td>$V^+-1.5$</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range $R_L = \infty$ on All Op Amps</td>
<td>1</td>
<td>2</td>
<td>mA</td>
</tr>
</tbody>
</table>

Electrical Characteristics

$V^+ = +5.0V$, (Note 4), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM158A</th>
<th>LM358A</th>
<th>LM158/LM258</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V^+ = 15V$, $T_A = 25^\circ C$, $R_L \geq 2k\Omega$, (For $V_O = 1V$ to $11V$)</td>
<td>50</td>
<td>100</td>
<td>50 100</td>
<td>V/mV</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>$T_A = 25^\circ C$, $V_{CM} = 0V$ to $V^+-1.5V$</td>
<td>70</td>
<td>85</td>
<td>70 85</td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>$V^+ = 5V$ to $30V$, $V^+ = 26V$, $T_A = 25^\circ C$</td>
<td>65</td>
<td>100</td>
<td>65 100</td>
<td>dB</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling</td>
<td>$f = 1$ kHz to 20 kHz, $T_A = 25^\circ C$</td>
<td>-120</td>
<td>-120</td>
<td>-120</td>
<td>dB</td>
</tr>
<tr>
<td>Output Current Source</td>
<td>$V_{IN}^+ = 1V$, $V_{IN}^- = 0V$, $V^+ = 15V$, $V_O = 2V$, $T_A = 25^\circ C$</td>
<td>20</td>
<td>40</td>
<td>20 40</td>
<td>mA</td>
</tr>
<tr>
<td>Sink</td>
<td>$V_{IN}^+ = 1V$, $V_{IN}^- = 0V$, $V^+ = 15V$, $V_O = 2V$, $T_A = 25^\circ C$, $V^+ = 15V$, $V_O = 200 mV$, $T_A = 25^\circ C$, $V^+ = 15V$</td>
<td>10</td>
<td>20</td>
<td>10 20</td>
<td>mA</td>
</tr>
<tr>
<td>Short Circuit to Ground</td>
<td>$T_A = 25^\circ C$, (Note 2), $V^+ = 15V$</td>
<td>40</td>
<td>60</td>
<td>40 60</td>
<td>mA</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 5)</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>mV</td>
</tr>
<tr>
<td>Input Offset Voltage Drift</td>
<td>$R_S = 0\Omega$</td>
<td>7</td>
<td>15</td>
<td>7 20</td>
<td>$\mu V/^\circ C$</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$I_{IN(+)} - I_{IN(-)}$, $T_A = 25^\circ C$, $V_{CM} = 0V$</td>
<td>30</td>
<td>75</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Input Offset Current Drift</td>
<td>$R_S = 0\Omega$</td>
<td>10</td>
<td>200</td>
<td>10 300</td>
<td>$pA/^\circ C$</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>$I_{IN(+)} + I_{IN(-)}$, $T_A = 25^\circ C$, $V_{CM} = 0V$</td>
<td>40</td>
<td>100</td>
<td>40 200</td>
<td>nA</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 30V$, (Note 7), $V^+ = 26V$</td>
<td>0</td>
<td>V^+-2</td>
<td>0 V^+-2</td>
<td>V</td>
</tr>
</tbody>
</table>
Electrical Characteristics

V$^+$ = +5.0V, (Note 4), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM158A</th>
<th>LM358A</th>
<th>LM158/LM258</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Large Signal Voltage</td>
<td>V$^+$ = +15V, (V$ _O =$ 1V to 11V, R$ _L \geq$ 2 kΩ)</td>
<td>25</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Gain</td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V$ _{CH}$ = +30V, R$ _L = $ 2 kΩ</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V$ _{CL}$ = 5V, R$ _L = $ 10 kΩ</td>
<td>5</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Output Current Source</td>
<td>V$ _{IN}$ = +1V, V$ _{IN}$ = 0V, V$^+$ = 15V, V$ _O =$ 2V</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Output Current Sink</td>
<td>V$ _{IN}$ = +1V, V$ _{IN}$ = 0V, V$^+$ = 15V, V$ _O =$ 2V</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

Electrical Characteristics

V$^+$ = +5.0V, (Note 4), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM358</th>
<th>LM2904</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Large Signal Voltage</td>
<td>V$^+$ = 15V, T$ _A =$ 25˚C, R$ _L \geq$ 2 kΩ, (For V$ _O =$ 1V to 11V)</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>T$ _A =$ 25˚C, V$ _{CM}$ = 0V to V$^+-1.5V$</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>V$^+$ = 5V to 30V, (LM2904, V$^+$ = 5V to 26V), T$ _A =$ 25˚C</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling</td>
<td>f = 1 kHz to 20 kHz, T$ _A =$ 25˚C, (Input Referred)</td>
<td>–120</td>
<td>–120</td>
</tr>
<tr>
<td>Output Current Source</td>
<td>V$ _{IN}$ = 1V, V$ _{IN}$ = 0V, V$^+$ = 15V, V$ _O =$ 2V</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Output Current Sink</td>
<td>V$ _{IN}$ = 1V, V$ _{IN}$ = 0V, V$^+$ = 15V, V$ _O =$ 2V</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Short Circuit to Ground</td>
<td>T$ _A =$ 25˚C, (Note 2), V$^+$ = 15V</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>V$^+$ = 30 V, (Note 7) (LM2904, V$^+$ = 26V)</td>
<td>0</td>
<td>V$^+$ –2</td>
</tr>
<tr>
<td>Input Offset Voltage Drift</td>
<td>R$ _S =$ 0Ω</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Input Offset Current Drift</td>
<td>I$ _{IN(+) – IN(–)}$</td>
<td>150</td>
<td>45</td>
</tr>
<tr>
<td>Input Offset Current Drift</td>
<td>R$ _S =$ 0Ω</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I$ _{IN(+) or IN(–)}$</td>
<td>40</td>
<td>500</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>V$^+$ = 30 V, (Note 7) (LM2904, V$^+$ = 26V)</td>
<td>0</td>
<td>V$^+$ –2</td>
</tr>
</tbody>
</table>
Electrical Characteristics (Continued)

\(V^+ = +5.0 \text{V}, \) (Note 4), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter Conditions</th>
<th>LM358</th>
<th>LM2904</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Large Signal Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V^+ = +15\text{V})</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Gain ((\text{V}_\text{O} = 1\text{V} \text{ to } 11\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_L \geq 2 \text{k}\Omega)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage ((\text{LM2904}, V^+ = 26\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_L = 10 \text{k}\Omega)</td>
<td>27</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Swing ((\text{LM2904}, V^+ = 26\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CL}} = 5\text{V}, R_L = 10 \text{k}\Omega)</td>
<td>5</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Output Current Source ((V^+ = +30\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V^+ = +1\text{V}, V_{\text{IN}^-} = 0\text{V}, V^+ = 15\text{V}, V_{\text{O}^-} = 2\text{V})</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Sink ((\text{LM2904}, V^+ = 26\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{IN}^-} = +1\text{V}, V_{\text{IN}^+} = 0\text{V}, V^+ = 15\text{V}, V_{\text{O}^-} = 2\text{V})</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Note 1: For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a +125°C maximum junction temperature and a thermal resistance of 120°C/W for MDIP, 182°C/W for Metal Can, 189°C/W for Small Outline package, and 230°C/W for micro SMD, which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM258/LM258A and LM158/LM158A can be derated based on a +150°C maximum junction temperature. The dissipation is the total of both amplifiers—use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

Note 2: Short circuits from the output to \(V^+\) can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of \(V^+\). At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the \(V^+\) voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than \(-0.3\text{V}\) (at 25°C).

Note 4: These specifications are limited to \(-55\text{C} \leq T_A \leq +125\text{C}\) for the LM158/LM158A. With the LM258/LM258A, all temperature specifications are limited to \(-25\text{C} \leq T_A \leq +85\text{C}\), the LM358/LM358A temperature specifications are limited to \(0\text{C} \leq T_A \leq +70\text{C}\), and the LM2904 specifications are limited to \(-40\text{C} \leq T_A \leq +85\text{C}\).

Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is \(V^+ - 1.5\text{V}\) (at 25°C), but either or both inputs can go to +32V without damage (+26V for LM2904), independent of the magnitude of \(V^+\).

Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Note 7: Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.

Note 8: Human body model, 1.5 kΩ in series with 100 pF.

Typical Performance Characteristics

Input Voltage Range

Input Current

Note 9: Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.

Note 10: Human body model, 1.5 kΩ in series with 100 pF.
Typical Performance Characteristics (Continued)

Supply Current

Voltage Gain

Open Loop Frequency Response

Common-Mode Rejection Ratio

Voltage Follower Pulse Response

Voltage Follower Pulse Response (Small Signal)
Typical Performance Characteristics (Continued)

Application Hints

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 V_{DC}. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_{DC}.

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated, and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger.
Application Hints (Continued)

than V^+ without damaging the device. Protection should be
provided to prevent the input voltages from going negative
more than $-0.3 \, V_{DC}$ (at $25^\circ C$). An input clamp diode with a
resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers
have a class A output stage for small signal levels which
converts to class B in a large signal mode. This allows the am-
plifiers to both source and sink large output currents. There-
fore both NPN and PNP external current boost transistors
can be used to extend the power capability of the basic am-
plifiers. The output voltage needs to raise approximately 1
diode drop above ground to bias the on-chip vertical PNP
transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled
to the output of the amplifier, a resistor should be used, from
the output of the amplifier to ground to increase the class A
bias current and prevent crossover distortion. Where the
load is directly coupled, as in dc applications, there is no
crossover distortion.

Capacitive loads which are applied directly to the output of
the amplifier reduce the loop stability margin. Values of 50
pF can be accommodated using the worst-case non-inverting
unity gain connection. Large closed loop gains or resistive
isolation should be used if larger load capacitance must be
driven by the amplifier.

The bias network of the LM158 establishes a drain current
which is independent of the magnitude of the power supply
voltage over the range of 3 V_{DC} to 30 V_{DC}.

Output short circuits either to ground or to the positive power
supply should be of short time duration. Units can be de-
stroyed, not as a result of the short circuit current causing
metal fusing, but rather due to the large increase in IC chip
dissipation which will cause eventual failure due to exces-
sive function temperatures. Putting direct short-circuits on
more than one amplifier at a time will increase the total IC
power dissipation to destructive levels, if not properly pro-
tected with external dissipation limiting resistors in series
with the output leads of the amplifiers. The larger value of
output source current which is available at $25^\circ C$ provides a
larger output current capability at elevated temperatures
(see typical performance characteristics) than a standard IC
op amp.

The circuits presented in the section on typical applications
emphasize operation on only a single power supply voltage.
If complementary power supplies are available, all of the
standard op amp circuits can be used. In general, introduc-
ing a pseudo-ground (a bias voltage reference of $V^+/2$) will
allow operation above and below this value in single power
supply systems. Many application circuits are shown which
take advantage of the wide input common-mode voltage
range which includes ground. In most cases, input biasing is
not required and input voltages which range to ground can
easily be accommodated.
Ordering Information

<table>
<thead>
<tr>
<th>Package</th>
<th>Temperature Range</th>
<th>NSC Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO-8</td>
<td>−55°C to 125°C</td>
<td>LM358AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LM358AMX</td>
</tr>
<tr>
<td></td>
<td>−25°C to 85°C</td>
<td>LM358M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LM358MX</td>
</tr>
<tr>
<td></td>
<td>0°C to 70°C</td>
<td>LM2904M</td>
</tr>
<tr>
<td></td>
<td>−40°C to 85°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M08A</td>
</tr>
<tr>
<td>8-Pin Molded DIP</td>
<td></td>
<td>LM358AN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LM358N</td>
</tr>
<tr>
<td>8-Pin Ceramic DIP</td>
<td>LM158AJ/883(Note 11)</td>
<td>LM2904N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO-5, 8-Pin Metal Can</td>
<td>LM158AH/883(Note 11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Bump micro SMD</td>
<td>LM358BP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LM358BPX</td>
</tr>
</tbody>
</table>

Note 11: LM158 is available per SMD #5962-8771001
LM158A is available per SMD #5962-8771002

Note 12: See STD Mil DWG 5962L87710 for Radiation Tolerant Devices
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\)

Non-Inverting DC Gain (0V Output)

\[\text{GAIN} = 1 + \frac{R_2}{R_1} = 101 \text{ (as shown)} \]

DC Summing Amplifier

\((V_{IN}' \geq 0 \, V_{DC} \text{ and } V_O \geq 0 \, V_{DC})\)

\[V_O = V_1 + V_2 + V_3 + V_4 \]

\((V_1 + V_2) \geq (V_3 + V_4) \text{ to keep } V_O > 0 \, V_{DC} \]

*\(R\) not needed due to temperature independent \(I_{IN}\)

Power Amplifier

\[V_O = 0 \, V_{DC} \text{ for } V_IN = 0 \, V_{DC} \]

\(A_V = 10\)

Where: \(V_O = V_1 + V_2 + V_3 + V_4\)

\((V_1 + V_2) \geq (V_3 + V_4) \text{ to keep } V_O > 0 \, V_{DC} \)
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\) (Continued)

“BI-QUAD” RC Active Bandpass Filter

\[
\begin{align*}
R1 &= 100k \\
R2 &= 100k \\
R3 &= 100k \\
R4 &= 10M \\
C1 &= 330 \, pF \\
R5 &= 470k \\
C2 &= 330 \, pF \\
R6 &= 470k \\
R7 &= 100k \\
R8 &= 100k \\
C3 &= 10nF
\end{align*}
\]

\(f_0 = 1 \, kHz\)
\(Q = 50\)
\(A_v = 100 \, (40 \, dB)\)

Fixed Current Sources

\(I_2 = \left(\frac{R1}{R2} \right) I_1\)

Lamp Driver

\(30 \, mA \quad \beta \geq 20 \quad 600 \, mA\)
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{DC}) \) (Continued)

LED Driver

\[V_L \leq V^+ - 2\text{V} \]

\(V^+_L \) for a small \(I_L \)

Current Monitor

\[V_O = \frac{1V(I_L)}{I_A} \]

*\(\)Increase \(R_1 \) for \(I_L \) small
\n\[V_L \leq V^+ - 2\text{V} \]

Driving TTL

\[V_O = V_{IN} \]

Voltage Follower

\[V_O = V_{IN} \]

Pulse Generator

\(V^+_O \)
Typical Single-Supply Applications (V⁺ = 5.0 VDC) (Continued)

Squarewave Oscillator

Pulse Generator

Low Drift Peak Detector

HIGH Z_IN
LOW Z_OUT
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{\text{DC}})\) (Continued)

High Compliance Current Sink

\[
I_O = 1 \text{ amp/volt } V_{\text{IN}}
\]

(Increase \(R_E\) for \(I_O\) small)

Comparator with Hysteresis

Voltage Controlled Oscillator (VCO)

\(V^{+} = V^+ = 5.0 \text{ V}_{\text{DC}}\)

WIDE CONTROL VOLTAGE RANGE: \(0 \text{ V}_{\text{DC}} \leq V_C \leq 2 (V^+ - 1.5 \text{ V}_{\text{DC}})\)
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC}) \) (Continued)

AC Coupled Inverting Amplifier

\[
A_v = \frac{R_3}{R_1} \quad \text{(As shown, } A_v = 10) \]

Ground Referencing a Differential Input Signal
AC Coupled Non-Inverting Amplifier

\[A_v = \frac{1 + \frac{R_2}{R_1}}{1} \]

\[A_v = 11 \text{ (As Shown)} \]

DC Coupled Low-Pass RC Active Filter

\[f_0 = 1 \text{ kHz} \]

\[Q = 1 \]

\[A_v = 2 \]
Bandpass Active Filter

- $f_0 = 1 \text{ kHz}$
- $Q = 25$

High Input Z, DC Differential Amplifier

For $\frac{R_1}{R_2} = \frac{R_4}{R_3}$ (CMRR depends on this resistor ratio match)

$V_O = 1 + \frac{R_4}{R_3} (V_2 - V_1)$

As Shown: $V_O = 2 (V_2 - V_1)$
Typical Single-Supply Applications \((V^* = 5.0 \, V_{DC}) \) (Continued)

Photo Voltaic-Cell Amplifier

\[I_{CELL} \rightarrow 1/2 \, LM358 \rightarrow V_O \]

(CELL HAS 0V ACROSS IT)

Bridge Current Amplifier

\[+V_R, R, R(1 + \delta) \rightarrow 1/2 \, LM358 \rightarrow V_O \]

\[R_I, R \]

For \(\delta \ll 1 \) and \(R_I >> R \)

\[V_O = \frac{V_{REF} (\delta)}{2} \frac{R_I}{R} \]

High Input Z Adjustable-Gain DC Instrumentation Amplifier

\[+V_1 \rightarrow 1/2 \, LM358 \rightarrow R_1, R_3, R_4, R_6, R_7 \rightarrow V_O \]

\[R_2, 2k \]

\[GAIN \, ADJUST \]

\[R_5, 100k \]

If \(R_1 = R_5 \) & \(R_3 = R_4 = R_6 = R_7 \) (CMRR depends on match)

\[V_O = 1 + \frac{2R_1}{R_2} (V_2 - V_1) \]

As shown \(V_O = 101 (V_2 - V_1) \)
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{\text{DC}})\) (Continued)

Schematic Diagram (Each Amplifier)
Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LM158AH, LM158AH/883, LM158H,
LM158H/883, LM258H or LM358H
NS Package Number H08C

Cerdip Package (J)
NS Package Number J08A
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

S.O. Package (M)
Order Number LM358M, LM358AM or LM2904M
NS Package Number M08A
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dip Package (N)
Order Number LM358AN, LM358N or LM2904N
NS Package Number N08E

Order Number LM158WG/883
NS Package Number W14B
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

NOTES: UNLESS OTHERWISE SPECIFIED

1. EPOXY COATING
2. 63Sn/37Pb EUTECTIC BUMP
3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
4. PIN 1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION REMAINING PINS ARE NUMBERED COUNTERCLOCKWISE.
5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X₁ IS PACKAGE WIDTH, X₂ IS PACKAGE LENGTH AND X₃ IS PACKAGE HEIGHT.
6. REFERENCE JEDEC REGISTRATION MO-211, VARIATION BC.

National Semiconductor
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com

National Semiconductor
Europe
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.