7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but it can be quite useful when you have access to the machine-language level of a machine or when you are in a position to build special-purpose hardware out of readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally probable. Of course you can just generate uniform random deviates between zero and one and use their high-order bit (i.e., test if they are greater than or less than 0.5). However this takes a lot of arithmetic; there are special-purpose applications, such as real-time signal processing, where you want to generate bits very much faster than that.

One method for generating random bits, with two variant implementations, is based on “primitive polynomials modulo 2.” The theory of these polynomials is beyond our scope (although §7.7 and §20.3 will give you small tastes of it). Here, suffice it to say that there are special polynomials among those whose coefficients are zero or one. An example is

\[x^{18} + x^5 + x^2 + x^1 + x^0 \]

which we can abbreviate by just writing the nonzero powers of \(x \), e.g.,

\((18, 5, 2, 1, 0) \)

Every primitive polynomial modulo 2 of order \(n \) (=18 above) defines a recurrence relation for obtaining a new random bit from the \(n \) preceding ones. The recurrence relation is guaranteed to produce a sequence of maximal length, i.e., cycle through all possible sequences of \(n \) bits (except all zeros) before it repeats. Therefore one can seed the sequence with any initial bit pattern (except all zeros), and get \(2^n - 1 \) random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) through \(n \) (generated \(n \) steps ago), and denoted \(a_1, a_2, \ldots, a_n \). We want to give a formula for a new bit \(a_0 \). After generating \(a_0 \) we will shift all the bits by one, so that the old \(a_n \) is finally lost, and the new \(a_0 \) becomes \(a_1 \). We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift register \(n \) bits long and a few XOR ("exclusive or" or bit addition mod 2) gates. For the primitive polynomial given above, the recurrence formula is

\[a_0 = a_{18} \text{ XOR } a_5 \text{ XOR } a_2 \text{ XOR } a_1 \]

The terms that are XOR’ed together can be thought of as “taps” on the shift register, XOR’d into the register’s input. More generally, there is precisely one term for each nonzero coefficient in the primitive polynomial except the constant (zero bit) term. So the first term will always be \(a_n \) for a primitive polynomial of degree \(n \), while the last term might or might not be \(a_1 \), depending on whether the primitive polynomial has a term in \(x^1 \).

It is rather cumbersome to illustrate the method in FORTRAN. Assume that \(\& \) and is a bitwise AND function, not is bitwise complement, \(\lshft(\ , 1) \) is leftshift by one bit, \(\lor \) is bitwise OR. (These are available in many FORTRAN implementations.) Then we have the following routine.
Figure 7.4.1. Two related methods for obtaining random bits from a shift register and a primitive polynomial modulo 2. (a) The contents of selected taps are combined by exclusive-or (addition modulo 2), and the result is shifted in from the right. This method is easiest to implement in hardware. (b) Selected bits are modified by exclusive-or with the leftmost bit, which is then shifted in from the right. This method is easiest to implement in software.

```
FUNCTION irbit1(iseed)
  INTEGER irbit1, iseed, IB1, IB2, IB5, IB18
  PARAMETER (IB1=1, IB2=2, IB5=16, IB18=131072)
  Powers of 2.
  Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which is modified for the next call).
  LOGICAL newbit
  The accumulated XOR’s.
  newbit=iand(iseed, IB18).ne.0
  Get bit 18.
  if(iand(iseed, IB5).ne.0)newbit=not.newbit
  XOR with bit 5.
  if(iand(iseed, IB2).ne.0)newbit=not.newbit
  XOR with bit 2.
  if(iand(iseed, IB1).ne.0)newbit=not.newbit
  XOR with bit 1.
  irbit1=0
  iseed=iand(ishft(iseed, 1), not(IB1))
  Leftshift the seed and put a zero in its bit 1.
  if(newbit)then
    But if the XOR calculation gave a 1,
    irbit1=1
    iseed=ior(iseed, IB1)
    then put that in bit 1 instead.
  endif
  return
END
```

“Method II” is less suited to direct hardware implementation (though still possible), but is more suited to machine-language implementation. It modifies more than one bit among the saved \(n \) bits as each new bit is generated (Figure 7.4.1). It generates the maximal length sequence, but not in the same order as Method I. The prescription for the primitive polynomial (7.4.1) is:

\[
\begin{align*}
 a_0 &= a_{18} \\
 a_5 &= a_5 \text{ XOR } a_0 \\
 a_2 &= a_2 \text{ XOR } a_0 \\
 a_1 &= a_1 \text{ XOR } a_0
\end{align*}
\] (7.4.3)
In general there will be an exclusive-or for each nonzero term in the primitive polynomial except 0 and \(n \). The nice feature about Method II is that all the exclusive-or’s can usually be done as a single masked word XOR (here assumed to be the \texttt{FORTTRAN} function \texttt{ieor}):
FUNCTION irbit2(iseed)
INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).
if(iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
 iseed=ior(ishft(ieor(iseed,MASK),1),IB1)
 irbit2=1
else Shift and put 0 into bit 1.
 iseed=iand(ishft(iseed,1),not(IB1))
 irbit2=0
endif
return
END

A word of caution is: Don’t use sequential bits from these routines as the bits
of a large, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth[1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by \pm 1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because \(2^{18}\) is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table[2] lists one primitive polynomial
for each degree up to 100. (In fact there exist many such for each degree. For
example, see §7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’ first edition, we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language like FORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly