sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2.
d2=d2-2.
e1=e2*e1
enddo
dawson=0.5641895835*sign(exp(-xp**2),x)*sum
Constant is \(1/\sqrt{\pi}\).
endif
return
END

Other methods for computing Dawson’s integral are also known [2,3].

CITED REFERENCES AND FURTHER READING:

\subsection{6.11 Elliptic Integrals and Jacobian Elliptic Functions}

Elliptic integrals occur in many applications, because any integral of the form

\[\int R(t, s) \, dt \] \hspace{1cm} (6.11.1)

where \(R\) is a rational function of \(t\) and \(s\), and \(s\) is the square root of a cubic or quartic polynomial in \(t\), can be evaluated in terms of elliptic integrals. Standard references \[1\] describe how to carry out the reduction, which was originally done by Legendre. Legendre showed that only three basic elliptic integrals are required. The simplest of these is

\[I_1 = \int_y^x \frac{dt}{\sqrt{(a_1 + b_1 t)(a_2 + b_2 t)(a_3 + b_3 t)(a_4 + b_4 t)}} \] \hspace{1cm} (6.11.2)

where we have written the quartic \(s^2\) in factored form. In standard integral tables \[2\], one of the limits of integration is always a zero of the quartic, while the other limit lies closer than the next zero, so that there is no singularity within the interval. To evaluate \(I_1\), we simply break the interval \([y, x]\) into subintervals, each of which either begins or ends on a singularity. The tables, therefore, need only distinguish the eight cases in which each of the four zeros (ordered according to size) appears as the upper or lower limit of integration. In addition, when one of the \(b\)'s in (6.11.2) tends to zero, the quartic reduces to a cubic, with the largest or smallest singularity moving to \(\pm \infty\); this leads to eight more cases (actually just special cases of the first eight). The sixteen cases in total are then usually tabulated in terms of Legendre’s standard elliptic integral of the 1st kind, which we will define below. By a change of the variable of integration \(t\), the zeros of the quartic are mapped to standard locations...
on the real axis. Then only two dimensionless parameters are needed to tabulate Legendre’s integral. However, the symmetry of the original integral (6.11.2) under permutation of the roots is concealed in Legendre’s notation. We will get back to Legendre’s notation below. But first, here is a better way:

Carlson [3] has given a new definition of a standard elliptic integral of the first kind,

\[
R_F(x, y, z) = \frac{1}{2} \int_0^\infty \frac{dt}{\sqrt{(t+x)(t+y)(t+z)}} \tag{6.11.3}
\]

where \(x, y,\) and \(z\) are nonnegative and at most one is zero. By standardizing the range of integration, he retains permutation symmetry for the zeros. (Weierstrass’ canonical form also has this property.) Carlson first shows that when \(x\) or \(y\) is a zero of the quartic in (6.11.2), the integral \(I_1\) can be written in terms of \(R_F\) in a form that is symmetric under permutation of the remaining three zeros. In the general case when neither \(x\) nor \(y\) is a zero, two such \(R_F\) functions can be combined into a single one by an addition theorem, leading to the fundamental formula

\[
I_1 = 2R_F(U_{12}, U_{13}, U_{14}) \tag{6.11.4}
\]

where

\[
U_{ij} = (X_iX_jY_kY_m + Y_iY_jX_kX_m)/(x - y) \tag{6.11.5}
\]

\[
X_i = (a_i + b_i x)^{1/2}, \quad Y_i = (a_i + b_i y)^{1/2} \tag{6.11.6}
\]

and \(i, j, k, m\) is any permutation of \(1, 2, 3, 4\). A short-cut in evaluating these expressions is

\[
\begin{align*}
U_{13}^2 &= U_{12}^2 - (a_1 b_4 - a_4 b_1)(a_2 b_3 - a_3 b_2) \\
U_{14}^2 &= U_{12}^2 - (a_1 b_3 - a_3 b_1)(a_2 b_4 - a_4 b_2)
\end{align*} \tag{6.11.7}
\]

The \(U\)’s correspond to the three ways of pairing the four zeros, and \(I_1\) is thus manifestly symmetric under permutation of the zeros. Equation (6.11.4) therefore reproduces all sixteen cases when one limit is a zero, and also includes the cases when neither limit is a zero.

Thus Carlson’s function allows arbitrary ranges of integration and arbitrary positions of the branch points of the integrand relative to the interval of integration. To handle elliptic integrals of the second and third kind, Carlson defines the standard integral of the third kind as

\[
R_J(x, y, z, p) = \frac{3}{2} \int_0^\infty \frac{dt}{(t + p)\sqrt{(t+x)(t+y)(t+z)}} \tag{6.11.8}
\]

which is symmetric in \(x, y,\) and \(z\). The degenerate case when two arguments are equal is denoted

\[
R_D(x, y, z) = R_J(x, y, z, z) \tag{6.11.9}
\]

and is symmetric in \(x\) and \(y\). The function \(R_D\) replaces Legendre’s integral of the second kind. The degenerate form of \(R_F\) is denoted

\[
R_C(x, y) = R_F(x, y, y) \tag{6.11.10}
\]

It embraces logarithmic, inverse circular, and inverse hyperbolic functions.

Carlson [4-7] gives integral tables in terms of the exponents of the linear factors of the quartic in (6.11.1). For example, the integral where the exponents are \((\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})\) can be expressed as a single integral in terms of \(R_J\); it accounts for 144 separate cases in Gradshteyn and Ryzhik [2].

Refer to Carlson’s papers [3-7] for some of the practical details in reducing elliptic integrals to his standard forms, such as handling complex conjugate zeros.
Turn now to the numerical evaluation of elliptic integrals. The traditional methods [8] are Gauss or Landen transformations. Descending transformations decrease the modulus k of the Legendre integrals towards zero. Increasing transformations increase it towards unity. In these limits the functions have simple analytic expressions. While these methods converge quadratically and are quite satisfactory for integrals of the first and second kinds, they generally lead to loss of significant figures in certain regimes for integrals of the third kind. Carlson’s algorithms [9,10], by contrast, provide a unified method for all three kinds with no significant cancellations.

The key ingredient in these algorithms is the **duplication theorem**:

$$R_F(x,y,z) = 2R_F(x + \lambda, y + \lambda, z + \lambda)$$

$$= R_F\left(\frac{x + \lambda}{4}, \frac{y + \lambda}{4}, \frac{z + \lambda}{4}\right)$$

(6.11.11)

where

$$\lambda = (xy)^{1/2} + (xz)^{1/2} + (yz)^{1/2}$$

(6.11.12)

This theorem can be proved by a simple change of variable of integration [11]. Equation (6.11.11) is iterated until the arguments of R_F are nearly equal. For equal arguments we have

$$R_F(x,x,x) = x^{-1/2}$$

(6.11.13)

When the arguments are close enough, the function is evaluated from a fixed Taylor expansion about (6.11.13) through fifth-order terms. While the iterative part of the algorithm is only linearly convergent, the error ultimately decreases by a factor of $4^6 = 4096$ for each iteration. Typically only two or three iterations are required, perhaps six or seven if the initial values of the arguments have huge ratios. We list the algorithm for R_F here, and refer you to Carlson’s paper [9] for the other cases.

Stage 1: For $n = 0,1,2,\ldots$ compute

$$\mu_n = (x_n + y_n + z_n)/3$$

$$X_n = 1 - (x_n/\mu_n), \quad Y_n = 1 - (y_n/\mu_n), \quad Z_n = 1 - (z_n/\mu_n)$$

$$\epsilon_n = \max(|X_n|, |Y_n|, |Z_n|)$$

If $\epsilon_n < \text{tol}$ go to **Stage 2**; else compute

$$\lambda_n = (x_n y_n)^{1/2} + (x_n z_n)^{1/2} + (y_n z_n)^{1/2}$$

$$x_{n+1} = (x_n + \lambda_n)/4, \quad y_{n+1} = (y_n + \lambda_n)/4, \quad z_{n+1} = (z_n + \lambda_n)/4$$

and repeat this stage.

Stage 2: Compute

$$E_2 = X_n Y_n - Z_n^2, \quad E_3 = X_n Y_n Z_n$$

$$R_F = (1 - 1/4 E_2 + 1/32 E_3 + 1/342 E_2 E_3 - 1/462 E_2^2)/(\mu_n)^{1/2}$$

In some applications the argument p in R_J or the argument y in R_C is negative, and the Cauchy principal value of the integral is required. This is easily handled by using the formulas

$$R_J(x,y,z,p) =$$

$$\frac{(\gamma - y) R_J(x,y,z,\gamma) - 3 R_F(x,y,z) + 3 R_C(xz/y, p\gamma/y)}{(y - p)}$$

(6.11.14)

where

$$\gamma \equiv y + \frac{(z - y)(y - x)}{y - p}$$

(6.11.15)
is positive if \(p \) is negative, and

\[
R_C(x, y) = \left(\frac{x}{x - y} \right)^{1/2} R_C(x - y, -y)
\]
(6.11.16)

The Cauchy principal value of \(R_J \) has a zero at some value of \(p < 0 \), so (6.11.14) will give some loss of significant figures near the zero.

FUNCTION rf(x,y,z)

REAL rf, x, y, z, ERRTOL, TINY, BIG, THIRD, C1, C2, C3, C4
PARAMETER (ERRTOL=0.08, TINY=1.5e-38, BIG=3.E37, THIRD=1./3.,
 C1=0.124, C2=0.1, C3=6.44, C4=1.14)

Computes Carlson’s elliptic integral of the first kind, \(R_F(x, y, z) \). \(x, y, \) and \(z \) must be nonnegative, and at most one can be zero. TINY must be at least 5 times the machine underflow limit, BIG at most one fifth the machine overflow limit.

REAL alamb, ave, delx, dely, delz, e2, e3, sqrtx, sqpty, sqrtz, xt, yt, zt
if (min(x,y,z) < 0. or min(x+y,x+z,y+z) < TINY) goto 1
* max(x,y,z) < 0. or min(x+y,x+z,y+z) < TINY)
xt=x
yt=y
zt=z
1 continue
sqrtx=sqrt(x)
sqpty=sqrt(y)
sqrtz=sqrt(z)
alamb=sqrtx*(sqpty+sqrtz)+sqpty*sqrtz
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
if (max(abs(delx), abs(dely), abs(delz)) > ERRTOL) goto 1
e2=delx*dely-delz**2
e3=delx*dely*delz
rf=(1.+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
return
END

A value of 0.08 for the error tolerance parameter is adequate for single precision (7 significant digits). Since the error scales as \(\epsilon^6 \), we see that 0.0025 will yield double precision (16 significant digits) and require at most two or three more iterations. Since the coefficients of the sixth-order truncation error are different for the other elliptic functions, these values for the error tolerance should be changed to 0.04 and 0.0012 in the algorithm for \(R_C \), and 0.05 and 0.0015 for \(R_J \). As well as being an algorithm in its own right for certain combinations of elementary functions, the algorithm for \(R_C \) is used repeatedly in the computation of \(R_J \).

The Fortran implementations test the input arguments against two machine-dependent constants, TINY and BIG, to ensure that there will be no underflow or overflow during the computation. We have chosen conservative values, corresponding to a machine minimum of \(3 \times 10^{-39} \) and a machine maximum of \(1.7 \times 10^{38} \). You can always extend the range of admissible argument values by using the homogeneity relations (6.11.22), below.

FUNCTION rd(x,y,z)

REAL rd, x, y, z, ERRTOL, TINY, BIG, C1, C2, C3, C4, C5, C6
PARAMETER (ERRTOL=0.05, TINY=1.5e-25, BIG=4.5E21, C1=3./14., C2=1./6.,
 C3=3./14., C4=3./26., C5=.25*C3, C6=1.5*C4)

Computes Carlson’s elliptic integral of the second kind, \(R_D(x, y, z) \). \(x \) and \(y \) must be nonnegative, and at most one can be zero. \(z \) must be positive. TINY must be at least twice the negative 2/3 power of the machine overflow limit. BIG must be at most \(0.1 \times \) ERRTOL times the negative 2/3 power of the machine underflow limit.

REAL alamb, ave, delx, dely, delz, ea, eb, ec, ed, ee, fac, sqrtx, sqpty,
* sqrtz, sum, xt, yt, zt

if(min(x, y, z) .lt. 0.0 .or. min(x + y, z) .lt. TINY .or.
* max(x, y, z) .gt. BIG) pause 'invalid arguments in rd'
x = x
y = y
z = z
sum = 0.
fac = 1.

1 continue

sqrtx = sqrt(x)
sqy = sqrt(y)
sqrtz = sqrt(z)

alamb = sqrtx * (sqy + sqrtz) + sqy * sqrtz

sum = sum + fac / (sqrtz * (zt + alamb))

fac = .25 * fac
xt = .25 * (xt + alamb)
yt = .25 * (yt + alamb)
zt = .25 * (zt + alamb)

ave = .2 * (xt + yt + zt)
delx = (ave - xt) / ave
dely = (ave - yt) / ave
delz = (ave - zt) / ave

if(max(abs(delx), abs(dely), abs(delz)) .gt. ERRTOL) goto 1

ea = delx * dely
eb = delz * delz
ec = ea - eb
ed = ea - 6.0 * eb
ee = ed + ec
rd = 3.0 * sum + fac * (1.0 + ed * (-C1 + C5 * ed - C6 * delz * ee) + delz * (C2 * ee + delz * (-C3 * ec + delz * C4 * ea)))/(ave * sqrt(ave))

return

END

FUNCTION rj(x, y, z, p)
REAL rj, p, x, y, z, ERRTOL, TINY, BIG, C1, C2, C3, C4, C5, C6, C7, C8
PARAMETER (ERRTOL = .05, TINY = 2.5E-13, BIG = 9.E11, C1 = 3./14., C2 = 1./3.,
* C3 = 3./22., C4 = 3./26., C5 = .75*C3, C6 = 1.5*C4, C7 = .5*C2, C8 = C3+C3)
C USES rc, rf

Computes Carlson's elliptic integral of the third kind, R_j(x, y, z, p), x, y, and z must be nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy principal value is returned. TINY must be at least twice the cube root of the machine underflow limit, and at most one fifth the cube root of the machine overflow limit.

REAL a, alamb, alpha, ave, b, beta, delx, dely, delz, ea, eb, ec,
* ed, ee, fac, pt, rcx, rho, sqrtx, sqy, sqrtz, sum, tau, xt,
* yt, zt, rc, rf

if(min(x, y, z) .lt. 0.0 .or. min(x + y, z + x, y + z, abs(p)) .lt. TINY .or.
* max(x, y, z, abs(p)) .gt. BIG) pause 'invalid arguments in rj'

sum = 0.
fac = 1.

if (p .gt. 0.0) then
x = x
y = y
z = z
p = p
else
x = min(x, y, z)
z = max(x, y, z)
y = x + y + z - zt
a = 1.0 / (y - p)
b = a * (zt - yt) * (yt - xt)
g = yt * b
rho = x + zt / y
tau=p*pt/yt
rcx=rc(rho,tau)
endif
1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
beta=pt*(pt+alamb)**2
sum=sum+fac*rc(alpha,beta)
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
pt=.25*(pt+alamb)
ave=.2*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave
if(max(abs(delx),abs(dely),abs(delz),abs(delp)).gt.ERRTOL)goto 1
ea=delx*(dely+delz)+dely*delz
edelx=delx+delz
cP=delp**2
ed=ea-3.*edelx
ec=3.*edelx+fac*(1.+edelx*(-C1+C5*edelx-C6*ec)+eb*(C7+delp*(-C8+delp*C4))
*+delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
if (p.le.0.) rj=a*b*rj+3.*(rcx-rf(xt,yt,zt))
At times you may want to express your answer in Legendre’s notation. Alternatively, you may be given results in that notation and need to compute their values with the programs given above. It is a simple matter to transform back and forth.

The **Legendre elliptic integral of the 1st kind** is defined as

\[
F(\phi, k) \equiv \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}
\]

(6.11.17)

The **complete elliptic integral of the 1st kind** is given by

\[
K(k) \equiv F(\pi/2, k)
\]

(6.11.18)

In terms of \(R_F \),

\[
F(\phi, k) = \sin \phi R_F(\cos^2 \phi, 1 - k^2 \sin^2 \phi, 1)
\]

\[
K(k) = R_F(0, 1 - k^2, 1)
\]

(6.11.19)

The **Legendre elliptic integral of the 2nd kind** and the **complete elliptic integral of the 2nd kind** are given by

\[
E(\phi, k) \equiv \int_0^\phi \sqrt{1 - k^2 \sin^2 \theta} \, d\theta
\]

\[
= \sin \phi R_F(\cos^2 \phi, 1 - k^2 \sin^2 \phi, 1) - \frac{1}{3} k^2 \sin^3 \phi R_D(\cos^2 \phi, 1 - k^2 \sin^2 \phi, 1)
\]

(6.11.20)

\[
E(k) \equiv E(\pi/2, k) = R_F(0, 1 - k^2, 1) - \frac{1}{3} k^2 R_D(0, 1 - k^2, 1)
\]

Finally, the **Legendre elliptic integral of the 3rd kind** is

\[
\Pi(\phi, n, k) \equiv \int_0^\phi \frac{d\theta}{(1 + n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}}
\]

\[
= \sin \phi R_F(\cos^2 \phi, 1 - k^2 \sin^2 \phi, 1) - \frac{1}{3} n \sin^3 \phi R_J(\cos^2 \phi, 1 - k^2 \sin^2 \phi, 1, 1 + n \sin^2 \phi)
\]

(6.11.21)

(Note that this sign convention for \(n \) is opposite that of Abramowitz and Stegun [12], and that their \(\sin \alpha \) is our \(k \).)

FUNCTION ellf(phi,ak)

REAL ellf,ak,phi

USES rf

Legendre elliptic integral of the 1st kind \(F(\phi, k) \), evaluated using Carlson’s function \(R_F \).

The argument ranges are \(0 \leq \phi \leq \pi/2, 0 \leq k \sin \phi \leq 1 \).

REAL s,rf

\(s=\sin(\phi) \)

\(\text{elf}=s*\text{rf}(\cos(\phi)*2,(1.-s*ak)*(1.+s*ak),1.) \)

return

END
FUNCTION elle(phi,ak)
REAL elle,ak,phi
C USES rd,rf
Legendre elliptic integral of the 2nd kind \(E(\phi, k) \), evaluated using Carlson’s functions \(R_D \) and \(R_F \). The argument ranges are \(0 \leq \phi \leq \pi/2 \), \(0 \leq k \sin \phi \leq 1 \).
REAL cc,q,s,rd,rf
s=sin(phi)
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
elle=s*(rf(cc,q,1.)-((s*ak)**2)*rd(cc,q,1.)/3.)
return
END

FUNCTION ellpi(phi,en,ak)
REAL ellpi,ak,en,phi
C USES rf,rj
Legendre elliptic integral of the 3rd kind \(\Pi(\phi, n, k) \), evaluated using Carlson’s functions \(R_J \) and \(R_F \). (Note that the sign convention on \(n \) is opposite that of Abramowitz and Stegun.)
The ranges of \(\phi \) and \(k \) are \(0 \leq \phi \leq \pi/2 \), \(0 \leq k \sin \phi \leq 1 \).
REAL cc,enss,q,s,rf,rj
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
ellpi=s*(rf(cc,q,1.)-enss*rj(cc,q,1.,1.+enss)/3.)
return
END

Carlson’s functions are homogeneous of degree \(-\frac{1}{2}\) and \(-\frac{3}{2}\), so
\[
R_F(\lambda x, \lambda y, \lambda z) = \lambda^{-1/2} R_F(x, y, z)
\]
\[
R_J(\lambda x, \lambda y, \lambda z, \lambda p) = \lambda^{-3/2} R_J(x, y, z, p)
\]
Thus to express a Carlson function in Legendre’s notation, permute the first three arguments into ascending order, use homogeneity to scale the third argument to be 1, and then use equations (6.11.19)–(6.11.21).

Jacobian Elliptic Functions

The Jacobian elliptic function \(\text{sn} \) is defined as follows: instead of considering the elliptic integral
\[
u(y, k) \equiv u = F(\phi, k)
\]
consider the *inverse* function
\[
y = \sin \phi = \text{sn}(u, k)
\]
Equivalently,
\[
u = \int_0^\text{sn} \frac{dy}{\sqrt{(1-y^2)(1-k^2y^2)}}
\]
When \(k = 0 \), \(\text{sn} \) is just sin. The functions \(\text{cn} \) and \(\text{dn} \) are defined by the relations
\[
\text{sn}^2 + \text{cn}^2 = 1, \quad k^2 \text{sn}^2 + \text{dn}^2 = 1
\]
The routine given below actually takes \(m_c \equiv k_c^2 = 1-k^2 \) as an input parameter. It also computes all three functions \(\text{sn} \), \(\text{cn} \), and \(\text{dn} \) since computing all three is no harder than computing any one of them. For a description of the method, see [8].
SUBROUTINE snccndn(uu,emmc,sn,cn,dn)
REAL cn,dn,emmc,sn,uu,CA
PARAMETER (CA=.0003) The accuracy is the square of CA.
Returns the Jacobian elliptic functions sn(u, k_c), cn(u, k_c), and dn(u, k_c). Here uu = u,
while emmc = k_c^2.
INTEGER i,ii,l
REAL a,b,c,d,emc,u,em(13),en(13)
LOGICAL bo
emc=emmc
u=uu
if(emc.ne.0.)then
 bo=(emc.lt.0.)
 if(bo)then
 d=1.-emc
 emc=-emc/d
 d=sqrt(d)
 u=d*u
 endif
a=1.
dn=1.
do 1 i=1,13
 l=i
 em(i)=a
 emc=sqrt(emc)
en(i)=emc
 c=0.5*(a+emc)
 if(abs(a-emc).le.CA*a)goto 1
 emc=a*emc
 a=c
enddo
1 u=c*u
sn=sin(u)
cn=cos(u)
if(sn.eq.0.)goto 2
a=cn/sn
c=a*c
do 2 ii=1,1,-1
 b=em(ii)
 a=c*a
 c=dn*c
 dn=(en(ii)+a)/(b+a)
 a=c/b
enddo
2 a=1./sqrt(c**2+1.)
if(sn.lt.0.)then
 sn=-a
else
 sn=a
endif
sn=c*sn
if(bo)then
 a=dn
dn=cn
cn=a
sn=sn/d
endif
else
 cn=1./cosh(u)
dn=cn
sn=tanh(u)
endif
return
END
6.12 Hypergeometric Functions

As was discussed in §5.14, a fast, general routine for the the complex hypergeometric function \(2F_1(a, b; c; z) \), is difficult or impossible. The function is defined as the analytic continuation of the hypergeometric series,

\[
2F_1(a, b; c; z) = 1 + \frac{ab}{c} z + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{z^2}{2!} + \cdots \\
+ \frac{a(a+1) \ldots (a+j-1)b(b+1) \ldots (b+j-1)}{c(c+1) \ldots (c+j-1)} \frac{z^j}{j!} + \cdots
\]

(6.12.1)

This series converges only within the unit circle \(|z| < 1\) (see [1]), but one's interest in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path integration in the complex plane. We here merely list the routines that result.

Implementation of the function hypgeo is straightforward, and is described by comments in the program. The machinery associated with Chapter 16’s routine for integrating differential equations, odeint, is only minimally intrusive, and need not even be completely understood: use of odeint requires a common block with one zeroed variable, one subroutine call, and a prescribed format for the derivative routine hypdrv.

The subroutine hypgeo will fail, of course, for values of \(z \) too close to the singularity at 1. (If you need to approach this singularity, or the one at \(\infty \), use the “linear transformation formulas” in §15.3 of [1].) Away from \(z = 1 \), and for moderate values of \(a, b, c \), it is often remarkable how few steps are required to integrate the equations. A half-dozen is typical.