1. In a direct gap semiconductor the minimum in conduction band is directly above maximum in valence band (at the same value of wavevector \(k \)). In an indirect gap semiconductor this is not the case:

\[
\text{Direct} \quad E \quad \text{Indirect} \quad E
\]

\[k \]

2. Electrical conductivity for electrons, \(\sigma_e = ne\mu_e \), electrical conductivity for holes \(\sigma_h = pe\mu_h \)
The total conductivity is \(\sigma_{\text{total}} = ne\mu_e + pe\mu_h \)

 If \(\lambda \leq 1.00 \times 10^{-6} \text{m} \), then photons of sunlight have energy
 \[
 E \geq \frac{hc}{\lambda_{\text{max}}} = \frac{(6.626 \times 10^{-34} \text{Js})(3.00 \times 10^8 \text{m/s})}{1.00 \times 10^{-6} \text{m}} \left(\frac{1 \text{eV}}{1.60 \times 10^{-19} \text{J}} \right) = 1.24 \text{eV}
 \]
 Thus, the energy gap for the collector material should be \(E_g \leq 1.24 \text{eV} \)
 Since Si has an energy gap \(E_g \approx 1.14 \text{eV} \), it will absorb radiation of this energy and greater.
 Therefore, Si is acceptable as a material for a solar collector.

4. S&J p40 page 1436

 If the photon energy is 5.5 eV or higher, the diamond window will absorb. Here,
 \[
 (hf)_{\text{max}} = \frac{hc}{\lambda_{\text{min}}} = 5.5 \text{ eV}: \quad \lambda_{\text{min}} = \frac{hc}{5.5 \text{eV}} = \left(\frac{6.626 \times 10^{-34} \text{Js}}{5.5 \text{eV}} \right) \left(\frac{3.00 \times 10^8 \text{m/s}}{(5.5 \text{eV})(1.60 \times 10^{-19} \text{J/eV})} \right)
 \]
 \[\lambda_{\text{min}} = 2.26 \times 10^{-7} \text{m} = 226 \text{ nm} \]

5. (a) For \(\lambda = 250 \text{nm} \) \(E_\lambda = \frac{hc}{\lambda} = \left(\frac{6.63 \times 10^{-34} \text{Js}}{250 \times 10^{-9}} \right) = 7.96 \times 10^{-19} \text{ J} = 4.97 \text{ eV} \).

 The resistance stays the same until the wavelength reaches the gap wavelength, i.e.
 \[
 \lambda = \frac{hc}{E} = \lambda_g = \frac{hc}{E_g} \quad \text{E}_g(\text{GaAs}) = 1.52 \text{ eV} = 2.43 \times 10^{-19} \text{ J} \]

 (b) \(\lambda_g = \frac{hc}{E_g} = 933 \text{ nm} \)
(c) Resistance increases when wavelength exceeds the gap wavelength \(\lambda > \lambda_g\) because there is a drop in the number of photo-excited charge carriers. A drop in the number of charge carriers leads to an increase in resistance because \(\sigma = \frac{1}{\rho} = n\mu + p\mu_h\).

7. (a) The photon energy is \(E = \frac{hc}{\lambda} = 3.16 \times 10^{-19} \text{J}\)

(b) The number of photons per second striking the semiconductor is
\[
\frac{0.5}{3.16 \times 10^{-19} \text{(10}^{-4} \text{m}^2)} = 1.58 \times 10^{14}
\]
(effective surface area \(S\) of the photodetector is 1mm\(\times\)100mm = \(10^{-4} \text{ m}^2\))

(c) There are \(1.58 \times 10^{14}\) e-h pairs created assuming each absorbed photon creates a pair.

(d) \(\Delta N, \Delta P\) are the number of extra (photo-excited) electrons and holes due to illumination.

The conductivity is \(\sigma = n\mu\). The conductance is \(G = \frac{A}{L}\). (\(A\) is the cross-sectional area of photodetector, \(L\) is its length).

N.B. \(S\) is the effective surface area, \(A\) is the cross-sectional area of the photodetector.

Using \(\sigma = n\mu\), in the presence of illumination,
\[
\Delta \sigma = \frac{e(\Delta N\mu_e + \Delta P\mu_h)}{AL}
\]
where \(\mu_e, \mu_h\) are the respective electron and hole mobilities and \(AL\) is the volume of the semiconductor photodetector (=cross-sectional area \(A\) x length \(L\)). The change in conductance is
\[
\Delta G = \frac{e(\Delta N\mu_e + \Delta P\mu_h)}{L^2}
\]
giving
\[
\Delta G = \frac{(1.6 \times 10^{-19} \text{C})(1.58 \times 10^{14})(1.0) + (1.58 \times 10^{14})(0.001)}{L^2}
\]
substituting the electron and hole mobilities and putting \(L = 1 \text{mm} = 1 \times 10^{-3} \text{m}\),
\[
\Delta G = \frac{(1.6 \times 10^{-19} \text{C})(1.58 \times 10^{14})(1.0) + (1.58 \times 10^{14})(0.001)}{(1 \times 10^{-3})^2}
\]
\(= 25.3 \text{ S (siemens)}\)
(\(\text{Note, due to much lower mobility the hole contribution to the conductance is negligible}\))

8. \(E_g = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{J.s})(3.00 \times 10^8 \text{m/s})}{650 \times 10^{-9} \text{m}} \approx 1.91 \text{eV}\)