Electromagnetic field of the moving charge

Electric and magnetic fields of the moving charge are given by the following expressions (compare D.J.Griffiths “Introduction to electrodynamics”, Ch.10)

\[
E = \left(\frac{q}{4\pi\varepsilon_0} \right) \frac{R}{(\mathbf{R} \cdot \mathbf{U})^3} \left(1 - \frac{v^2}{c^2} \right) \mathbf{U} + \frac{1}{c^2} \mathbf{R} \times \left(\mathbf{U} \times \mathbf{a} \right)
\]

\[\text{(1)}\]

\[
B = \frac{1}{c} \mathbf{n}_R \times \mathbf{E}
\]

\[\text{(2)}\]

Here \(\mathbf{R} \) is the radius vector from the charge to the observation point, \(\mathbf{n}_R = \mathbf{R} / R \) is the unit vector along \(\mathbf{R} \), \(\mathbf{U} = \mathbf{n}_R - \mathbf{v} / c \), \(\mathbf{a} = \partial \mathbf{v} / \partial t' \) is the acceleration, and all quantities in the right-hand sides of Eqs. (1),(2) should be taken at the moment of time \(t' = t - R / c \), which is the retardation time. Use these expressions to find

1. Electric and magnetic fields of a charge moving with the constant velocity. Find the non-relativistic and ultra-relativistic limits of \(\mathbf{E} \) and \(\mathbf{B} \) and comment on the results.
2. Force between two charges moving with equal constant velocities along the x-axis parallel to each other and separated by a distance \(l \) along the y-axes.
3. Electric and magnetic fields of the accelerated charge at large distance \(R \) (retain only the main term). Assume for simplicity zero instant velocity. Explain why the acceleration term decreases slower than the Coulomb field.