Theories of relativity

Galilean or Newtonian relativity
vector addition of velocities
(familiar. Common sense?)

usually an excellent approximation but wrong in extreme cases

Special theory of relativity (Einstein)
theory of **dynamics** including
uniform relative motion

in excellent agreement with a wide range of experiments

General theory of relativity (Einstein)
theory of **gravitation**, includes
dynamics in accelerated frames

'Cosmological relativity''
theory of evolution of the universe,
includes expansion of space

Special relativity

Define: In an **inertial frame**, Newton's laws hold

why? **Mach's principle?**

Galilean Relativity (Galileo – Newton – 1904)

Galilean transformation

\[
\begin{align*}
x' &= x - vt \\
y' &= y \\
z' &= z \\
t' &= t
\end{align*}
\]

\[
u' = \frac{dx'}{dt'} = \frac{dx'}{dt} = \frac{dx}{dt} - v = u - v \quad \text{or} \quad u = v + u'
\]

additivity of velocities

\[
a' = \frac{d^2x'}{dt'^2} = \frac{du'}{dt} = \frac{du}{dt} = a
\]

.: if one frame is inertial, another with constant, uniform relative velocity is also inertial.

Principle of Galilean relativity:
Mechanics is the same in two such frames.
Why only mechanics? What about electromagnetism?
Are electrical components different if moving?
Does the frequency of a tuned circuit change?

\[\omega = \sqrt{\frac{1}{LC}} \]

Capacitor:

Does \(C = \frac{\varepsilon_0 A}{d} \) ?

Inductor:

Does \(L = \frac{\mu_0 N^2 A l}{l} \) ?

If so, is \(\frac{l}{\sqrt{\varepsilon_0 \mu_0}} \) the same?

Michelson & Morley

Suppose that light travels (at c) with respect to a 'stationary' medium (called the æther).

Set it up with \(l_1 = l_2 = l \) and \(v = 0 \), light beams return in phase.

Now move at \(v \) with respect to æther, but let light travel at c in the æther (≠ c in lab).

\[t_2 = \frac{l}{c + v} + \frac{l}{c - v} = \frac{2l}{c(1 - v^2/c^2)} \]

\[t_1 = \frac{l}{\sqrt{c^2 - v^2}} + \frac{l}{\sqrt{c^2 - v^2}} = \frac{2l}{c\sqrt{1 - v^2/c^2}} \]

\[\Delta t = \ldots \approx 2l \frac{v^2}{c^3} \quad l = 11 \text{ m} \]

Earth around sun: \(v = 30 \text{ kms}^{-1} \)

\[\Delta \phi = 2\pi \Delta t \cdot \frac{c}{\lambda} = \ldots = 2.3 \text{ radians} \ (0.4 \text{ fringes}) \]

Result: \(0.00 \pm 0.01 \text{ fringes} \)

What about electromagnetism?

Does \(C = \frac{\varepsilon_0 A}{d} \) ?

Does \(L = \frac{\mu_0 N^2 A}{l} \) ?

If so, is \(\frac{l}{\sqrt{\varepsilon_0 \mu_0}} \) the same?

Michelson and Morely's experiment:

\(c \) is the same in inertial frames

\(\therefore \) velocities are not (exactly) additive \(\text{huh?} \)

Principle of special relativity:
Mechanics and Electromagnetism are the same in inertial frames.

\(\text{Chose Maxwell's eqns ahead of additivity of velocity. } \mu_0, \varepsilon_0 \text{ same so } c \text{ the same.} \)
Principle of special relativity:

Mechanics *and* Electromagnetism are the same in inertial frames.

This is in agreement with Michelson and Morely's experiment: c is the same in inertial frames.

Common objection:

But it *can't* be true, because then velocities wouldn't be additive. It's just not common sense. Consider the light from the headlights of a moving vehicle.

EITHER

1) It travels at c with respect to the ground, and so the driver must measure it to go slower

But this is like M&M's experiment

OR

2) The light from the headlights of the moving vehicle must travel at $c+v$

But we can measure light from double stars

Experimentally, velocities *aren't* additive, at least not when one of the velocities is of order c.

When $v \ll c$, velocities are almost exactly additive so we don't notice, so the slight difference never gets incorporated into common sense.
Most clocks are electromagnetic. Consider a very simple one: light beam going between two mirrors.

Jane is in the car
Joe is on the verandah

Most clocks are electromagnetic. Consider a very simple one: light beam going between two mirrors.

\[t' = 2w/c \quad t = 2 \frac{\sqrt{w^2 + v^2(t/2)^2}}{c} \]
\[c^2t'^2 = 4 \left(\frac{c^2t^2}{4} + \frac{v^2t^2}{4} \right) \]
\[\therefore \quad t' = t\sqrt{1 - \frac{v^2}{c^2}} \]

Proper time \(t_0 \) in the rest frame. (Here it is \(t' \))

\[\frac{\Delta t}{\Delta t_0} = \gamma \geq 1 \]
in all other frames \(t \) is faster than proper time

Tests: pions, clocks in aeroplanes, accelerators
Pion lifetimes
A slow pion in the lab has lifetime 2.2 μs.
\[\therefore \text{proper lifetime of pion is 2.2 μs} \]

A fast pion (w.r.t. Earth) has lifetime 16 μs (Earth measurement).

Proper time is given by
\[t' = t/\gamma \]
where \(t \) is the lifetime measured in another frame at \(v \) w.r.t. the pion. (t always ≥ proper time).

\[\frac{t'}{t} = \sqrt{1 - \frac{v^2}{c^2}} \therefore v = 0.99 c \]

Relativity of simultaneity and time-order
Events \(e_1 \) and \(e_2 \).

Two events that are simultaneous in one frame are not simultaneous in another.

Weird, but the difference is tiny.

The order of occurrence can be different in two frames

\[\text{but only for events at } (x,t) \text{ and } (x+\Delta x,t+\Delta t) \text{ where } \frac{\Delta x}{\Delta t} > c \]

Length measurements
Measure a length. If object moves, must measure simultaneously, or else compensate for motion.

Proper length \(L_0 \) is length in the rest frame.
Need new transformation equations. Try linear.

\[
\begin{align*}
x' &= Ax + Bt \\
y' &= y \\
z' &= z \\
t' &= Ct + Dx
\end{align*}
\]

At \(x' = 0\), \(x = vt\).
\(\therefore A = -B/v\)

At \(t = 0\), \(x' = \gamma x = Ax\).
\(\therefore x' = \gamma(x - vt)\)

At \(x = 0\), \(t' = \gamma t\).
\(\therefore C = \gamma\)

At \(x' = 0\), \(t = \gamma t' \& x = vt\)
\(t'/\gamma = \gamma t - Dvt\)
\(\therefore 1 = \gamma^2 - D\gamma v\)
\(\therefore D = \frac{\gamma^2 - 1}{\gamma v}\)

\textbf{Lorentz transformations}

\[
\begin{align*}
x' &= \gamma(x - vt) & \text{Check that } L/L_0 = \gamma \\
y' &= y \\
z' &= z \\
t' &= \gamma \left(t - \frac{v x}{c^2} \right) & \text{Check that } t/t_0 = 1/\gamma
\end{align*}
\]

For both, check that \(v \ll c \Rightarrow \text{Galileo}\)
What about velocities?

\[
\begin{align*}
\gamma \frac{dx}{dt} &= \gamma (\frac{dx - v dt}{c^2}) \\
\frac{dx}{dt} - \frac{v}{1 - \frac{v}{c^2}dt} &= \frac{u_x - v}{1 - \frac{v}{c^2}} \\
\text{or} \quad u_x &= \frac{u_x' + v}{1 + \frac{vu_x}{c^2}}
\end{align*}
\]

Non-additivity of velocities

Example: how fast is the light from Jane’s headlights? (Jane’s car travels at \(v\).)

\[
\begin{align*}
u &= \frac{u' + v}{1 + \frac{vu}{c^2}} \\
&= \frac{c + v}{1 + \frac{v}{c}} = c
\end{align*}
\]

Example: the Vogon star ship travels towards earth at \(v = \frac{c}{2}\). A Vogon fires a zap at Earth with speed of \(\frac{c}{2}\) (w.r.t the ship). At what relative speed does the zap travel towards Earth?

\[
\begin{align*}
u &= \frac{u' + v}{1 + \frac{vu}{c^2}} \\
&= \frac{c/2 + c/2}{1 + (c/2)(c/2)/c^2} = \frac{c}{1 + 1/4} = 0.8 c
\end{align*}
\]

Example: An electron travels\(^*\) at 0.999 \(c\) in an accelerator. A positron travels\(^*\) at 0.999 \(c\) in the opposite direction. What is their relative speed?

\[
\begin{align*}
u' &= \frac{u - v}{1 - \frac{vu}{c^2}} \\
&= \frac{0.999c + 0.999c}{1 + (0.999c)(0.999c)/c^2} \\
&= \frac{1.998 c}{1 + .998001} = 0.9999995 c
\end{align*}
\]

\(^*\)Warning: diagram and question misleading
The twin paradox (≡ the clock paradox)

Ernest and Algernon Prism are twin babies. Ms Prism accidentally leaves Ernest in the baggage room of a space port where he is loaded onto the Ursa Major express \((v = 0.99 \, c)\). The mistake discovered, he is transferred to a returning ship \((0.99 \, c)\) when he is 35 light years away (as measured by Algernon on Earth).

*Accelerating at say \(g\),

Gen Rel effects are unimportant

When Ernest returns, Algernon has aged 70 years, but at \(\gamma = \frac{1}{\sqrt{1 - 0.99^2}} = 7\), Ernest has aged only 10 years.

"Hey gramps", says Ernest, "where's my bro Algernon? He has been travelling at 0.99 \(c\) relative to me. He should now be \(10/7 = 17\) months old?"

Space time diagrams *(To make the geometry easier, let's use \(v = 0.66 \, c\), so \(g = 1.33\), and a closer turning point)*

The twin 'paradox'

These diagrams use \(v = 0.66 \, c\), so \(\gamma = 1.33\).
Relativistic Mechanics

Problem. If $p_{\text{class}} = mv$, momentum is only conserved in one frame. (Check using u' above.)

Define $p = \gamma mv$. Check that this is conserved in both. Note that, for $v \ll c$, $p_{\text{class}} \to p$

Work Energy Theorem in Relativity

$$F = \frac{dp}{dt}$$

For force in x direction, $dW = F dx$

$$= \frac{dp}{dt} dx = vdp$$

$$= v. d(\gamma mv) = mv(vd\gamma + \gamma dv)$$

$$\gamma = \frac{1}{(1 - v^2/c^2)^{1/2}}$$

$$\therefore d\gamma = -\frac{1}{2} \cdot \frac{2v/c^2}{(1 - v^2/c^2)^{3/2}}$$

$$1 - \frac{v^2}{c^2} = \frac{1}{\gamma^2}$$

$$v^2 = c^2(1 - 1/\gamma^2)$$

$$dv = \frac{c^2}{\gamma^3} d\gamma$$

$$dW = m\left(\frac{c^2}{\gamma^2} + c^2 \left(1 - \frac{1}{\gamma^2}\right)\right) d\gamma = mc^2 d\gamma$$

$$K = \int_{v=0}^{v} dW = mc^2 \int_{\gamma=1}^{\gamma} d\gamma = mc^2(\gamma - 1) \quad (*)$$

Note: as $v \to 0$,

$$\left(1 - \frac{v^2}{c^2}\right)^{-1/2} \to 1 + \frac{1}{2} \frac{v^2}{c^2} + ... \quad \text{binomial or Taylor expansion}$$

$$\therefore K \to \frac{1}{2} mv^2$$

Write the preceding result (*) thus:

$$\gamma mc^2 = mc^2 + K$$

We might call this

$$E = E_o + K$$

where E_o would be like a proper energy

$$\therefore E_o = \ldots$$

Example What is the minimum energy released in an annihilation collision between an electron and a positron?

Minimum $2E_o = 2mc^2$

$$= 2 (9.11 \times 10^{-31} \text{ kg}) (3 \times 10^8 \text{ ms}^{-1})^2$$

$$= 1.6 \times 10^{-13} \text{ J} = 1.0 \text{ Mev}$$

(proper energy of electron = 0.511 MeV)

In principle, can make electron-positron pairs with 'modest' accelerators
Example The rest energy of a proton is 938 MeV, of a neutron 940 MeV. What is the binding energy per nucleon in 4He?

$$\frac{4.003}{6.02 \times 10^{26}} c^2 = 3.735 \text{ GeV}$$

$$2m_p + 2m_n + 2m_e = 3.758 \text{ GeV}$$

Difference is ~ 20 MeV \rightarrow ~ 5 MeV per nucleon

Incidentally:

Atomic masses:

"protium" (p.e) \[^1\text{H} \quad 1.00783 \]
deuterium (p,n,e) \[^2\text{H} \quad 2.01410 \]
tritium (p,2n,e) \[^3\text{H} \quad 3.01605 \]
helium (2p,2n,2e) \[^4\text{He} \quad 4.00260 \]

$$2m_{\text{De}} - m_{\text{He}} = 4.02820 - 4.00260 = 0.02560 \text{ au}$$

Example In the reaction

$$p + p^{-} \rightarrow p + p^{-} + p + p^{-},$$
one of the reacting protons is at rest in the laboratory. What minimum accelerating voltage is required for the other?

*minimum energy collision \rightarrow

*no energy 'wasted' on motion relative to centre of mass

*i.e. they all travel ~ together after the collision

\begin{align*}
\begin{array}{c}
\text{Before} \\
\begin{array}{c}
\bigcirc \quad + \\
\downarrow \\
\bigcirc \quad -
\end{array} \\
\begin{array}{c}
\bigcirc \quad - \\
\uparrow \\
\bigcirc \quad +
\end{array} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array}
\end{array} \\
\begin{array}{c}
\text{After} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array} \\
\begin{array}{c}
\bigcirc \quad - \\
\uparrow \\
\bigcirc \quad +
\end{array} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array}
\end{array}
\end{align*}

Let the centre of mass frame move at ν,

\begin{align*}
\begin{array}{c}
\text{Before} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array} \\
\begin{array}{c}
\bigcirc \quad - \\
\uparrow \\
\bigcirc \quad +
\end{array} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array}
\end{array} \\
\begin{array}{c}
\text{Lab frame} \\
\text{C of M frame}
\end{array}
\end{align*}

RH p^+ is at rest in lab, \therefore ν of CM frame is u'

\begin{align*}
\begin{array}{c}
\text{After} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array} \\
\begin{array}{c}
\bigcirc \quad - \\
\uparrow \\
\bigcirc \quad +
\end{array} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array}
\end{array} \\
\begin{array}{c}
\text{Lab frame} \\
\text{C of M frame}
\end{array}
\end{align*}

$$\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array} \\
\begin{array}{c}
\bigcirc \quad - \\
\uparrow \\
\bigcirc \quad +
\end{array} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array}
\end{array}$$

\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array} \\
\begin{array}{c}
\bigcirc \quad - \\
\uparrow \\
\bigcirc \quad +
\end{array} \\
\begin{array}{c}
\bigcirc \quad + \\
\uparrow \\
\bigcirc \quad -
\end{array}
\end{array}$$

all u'_f

small
In the CM frame $E_i \geq E_f$

\[2\gamma mc^2 \geq 4mc^2 \]

\[\therefore \gamma \geq 2 \]

\[u' = \ldots = \sqrt{\frac{3}{4}} \]

\[u = \frac{u' + v}{1 + \frac{vu}{c^2}} = \frac{u' + u'}{1 + \frac{u'u}{c^2}} = \frac{4\sqrt{3}}{7} c \]

\[qV = KE \geq \frac{mc^2}{\sqrt{1 - u^2/c^2}} - mc^2 \]

\[\Rightarrow V \geq 5.6 \text{ GV} \]

very wasteful experiment, so:

Example (As before, but): What if you collide p^+ and p^- travelling in opposite directions?

Here the lab is the C of M frame, so

Before:

\[\begin{array}{c}
+ \rightarrow \quad - \rightarrow \\
- \quad + \quad all \ u'_f \\
\end{array} \]

After

\[\begin{array}{c}
+ \quad - \\
small \\
\end{array} \]

Energy before = Energy after

\[2\gamma mc^2 = 4mc^2 \]

\[\gamma = 2 \]

\[u = \ldots = \sqrt{\frac{3}{4}} c \]

for each proton

Acceleration energy = energy to make a new proton

\[qV = mc^2 \]

\[m_p = 938 \text{ MeV} \]

\[\therefore V = 938 \text{ MV} \]
Example

'Solar constant' is 1.4 kWm$^{-2}$.

$r_{\text{earth-sun}} = 150 \times 10^6$ km

What is the rate of mass loss of the sun due to this radiation? (i.e. neglect neutrinos, solar wind...)

\[
I_{\text{sun}} = \frac{P_{\text{sun}}}{4\pi r^2} \quad \therefore \quad P = 1.4\pi r^2
\]

but \[P = -\frac{\text{d}E_0}{\text{d}t} = -c^2 \frac{\text{d}m}{\text{d}t}\]

\[
\frac{\text{d}m}{\text{d}t} = -\frac{P}{c^2} = -\frac{1.4\pi r^2}{c^2} = \ldots
\]

\[
= 4.4 \times 10^9 \text{ kg.s}^{-1}
\]

\[
= 1.3 \times 10^{14} \text{ tonnes.yr}^{-1}
\]

\[
= 6 \times 10^{23} \text{ tonnes so far}
\]

\[
= 1.1 \times 10^{-38} \%\text{yr}^{-1}
\]

\[
= 1.5 \times 10^{-19} \% \text{ so far}
\]
A useful transformation and mnemonic

\[p = \gamma mv \]

\[\therefore p^2c^2 + (mc^2)^2 = \gamma^2 m^2 v^2 c^2 + (mc^2)^2 \]

\[= \frac{m^2 v^2 c^2}{1 - v^2/c^2} + (mc^2)^2 \]

\[= \frac{m^2 v^2 c^2 + m^2 c^4 - m^2 v^2 c^2}{1 - v^2/c^2} \]

\[= (\gamma mc^2)^2 = E^2 \]

\[E = \sqrt{(pc)^2 + (mc^2)^2} \]

Mnemonic:

Example What is the momentum of an electron that has been accelerated through 20.0 MV?

i) What is \(v \)?

ii) What is \(\frac{p}{m_e} \)?

ii) What is \(\frac{p}{m_e} v \)?

i) \[E_i + \text{electrical work} = E_f \]

\[mc^2 + qV = \gamma mc^2 \]

\[\therefore \quad \gamma = 1 + \frac{qV}{mc^2} = 1 + \frac{20 \text{ MeV}}{0.511 \text{ MeV}} \]

\[\therefore \quad v = = 0.9997 \ c \]

ii) \[E_f = 20.0 \text{ MeV} + 0.511 \text{ MeV} \]

\[E^2 = (pc)^2 + (mc^2)^2 \]

\[p = \frac{\sqrt{E^2 - (mc^2)^2}}{c} \]

\[= \frac{\sqrt{20.5^2 - 0.5^2} \text{ MeV}}{c} \]

\[= 20.5 \text{ MeV}/c \]

\[= 1.09 \times 10^{-20} \text{ kgms}^{-1} \]

\[\frac{p}{m_e} = 1.20 \times 10^{10} \text{ ms}^{-1} \quad \text{units of speed} \]

\[= 40 \ c \]

iii) \[\frac{p}{m_e} v = \frac{p}{m_e} c = 40 \]
Particles and antiparticles

electron plus positron
\[e^- + e^+ \rightarrow \text{photons} \]
\[E_{\text{photons}} = 2\gamma m_e c^2 \]

proton plus antiproton
\[p^+ + p^- \rightarrow \text{photons} \]
\[E_{\text{photons}} = 2\gamma m_p c^2 \]

\[\text{photons} \rightarrow p^+ + p^- \]
possible but cannot control photons well enough

\[\text{fast} \quad \text{slow} \]
\[p^+ + p^- \rightarrow p^+ + p^- + p^+ + p^- \]

Example. A Vogon ship is approaching Earth at 0.8 c. A Klingon ship is approaching Earth at 0.8 c from the opposite direction. To an Earth observer, it appears to have a length of \(L = 60 \text{ m} \).

i) How long does the Klingon ship appear to observers on the Vogon ship?

The proper length \(L_0 = \gamma L = \frac{L}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = 100 \text{ m} \)

How much is it contracted according to Vogons?

Need the relative velocity:

Klingons \(\rightarrow u_x \) Earth \(\quad v \leftrightarrow \text{Vogons} \)

undashed frame \(\quad \) dashed frame

\[u'_x = \frac{u_x - v}{1 - \frac{vu_x}{c^2}} \]
\(u'_x \) is Klingon speed wrt Vogons
\(u_x \) is Klingon speed wrt Earth
\(v \) is Vogon speed wrt Earth

Note that \(v \) and \(u_x \) have opposite signs here.

\[u'_x = \frac{0.8c - (-0.8c)}{1 - (-0.8c) \cdot 0.8c} = 0.9756 \quad (\text{carry sig figs}) \]

\[L' = \frac{L_0/\gamma'}{1/\sqrt{1 - \left(\frac{u'_x}{c}\right)^2}} = 4.8 \text{ m} \]

ii) Earth observer see both ships to be one light hour away from Earth. It takes the Klingons 45 minutes to abandon ship. It takes the Vogons 30 minutes. They notice the impending collision now. Who will survive? (Think carefully.)
Dad, will you explain the Theory of Relativity to me? I don't understand why time goes slower at great speed.

It's because you keep changing time zones. See, if you fly to California, you gain three hours on a five-hour flight, right?

So if you go at the speed of light, you gain more time. Because it doesn't take as long to get there. Of course, the Theory of Relativity only works if you're going west.

Gee, that's not what Mom said at all! She must be totally off her rocker.

Well, we men are better at abstract reasoning. Go tell her that.

Einstein Simplified