Notes on Heat for PHYS1221-1231. Joe Wolfe, UNSW

Thermal Physics
Thermodynamics: laws relating macroscopic variables (P, V, T etc.).
Statistical Mechanics: molecular explanation.

Difference between heat and temperature
Extensive property \propto amount of material
Intensive property doesn't depend on amount

Which of heat and temperature is intensive?
Which relates to sense of hotness?

Define temperature:

Thermal equilibrium:
Thermal properties do not change with time

Definition of Temperature (T):
T is equal in any 2 bodies at thermal equilibrium.

Zeroth Law of Thermodynamics:
if $T_A = T_B$ and $T_B = T_C$, then $T_A = T_C$.

What is temperature? How to measure it?

Thermometers: Hg in glass, thermocouple, thermistor, liquid crystal layer, constant volume gas thermometer

Scales. Obvious definition of temperature θ: choose a property X and make X proportional to or linear with θ. This can only be done once for any temp scale θ.

Reference temperature
Melting or freezing? Depends on the pressure.

Thermal Expansion

\[\frac{\Delta L}{L} = \alpha \Delta T \]

Usually, $\frac{\Delta L}{L} \propto \Delta T$ for small ΔT

Define $\frac{\Delta L}{L} = \alpha \Delta T$

α is coefficient of linear expansion

e.g. steel $\alpha_{st} = 1.1 \times 10^{-5}$ K$^{-1}$
Al $\alpha_{Al} = 2.3 \times 10^{-5}$ K$^{-1}$
Brass $\alpha_{br} = 1.9 \times 10^{-5}$ K$^{-1}$

Example Bridge span is 1 km long.
Mid-winter, $T = -5^\circ$C summer, $T = 45^\circ$C
What is Δl?

$\Delta L = \alpha \Delta T L = \ldots = 55 \text{ cm}$
Example: Bimetallic Strip, 10 cm long, made of 1 mm brass and 1 mm steel. Straight at 0 °C, what angle at 100 °C?

\[
L + \Delta L_{st} = 2\pi R \cdot \frac{\theta}{360°}
\]

\[
L + \Delta L_{br} = 2\pi (R + t) \cdot \frac{\theta}{360°}
\]

subtract →

\[
2\pi t \cdot \frac{\theta}{360°} = \Delta L_{br} - \Delta L_{st} = L\Delta T(\alpha_{br} - \alpha_{st})
\]

\[
\theta = 14°
\]

\[D L_{br} - D L_{st} = \frac{L}{D T(a_{br} - a_{st})} = 14°\]

E.g. oven switch:

Volume Increase

Define

\[
\frac{\Delta V}{V} = \beta \Delta T
\]

\[\beta = \text{coefficient of volume expansion}\]

\[
\Delta V = (L + \Delta L)^3 - L^3
\]

\[= L^3(1 + \frac{3\Delta L}{L})^3 - L^3\]

\[= L^3 \left(1 + \frac{3\Delta L}{L} + \cdots - 1\right)\]

\[= V \cdot 3\alpha \Delta T\]

\[\therefore \beta = 3\alpha\]

Note: Water is unusual: 0° - 4°C, \(\beta < 0\)

Example What is change in \(\rho\) for steel between 0° C and 100° C?

\[\rho = \frac{M}{V} \quad \therefore d\rho = -\frac{M}{V^2} dV\]

\[\therefore \Delta \rho = -\frac{M}{V^2} \Delta V = -\rho \frac{\Delta V}{V}\]

\[\therefore \frac{\Delta \rho}{\rho} = -\frac{\Delta V}{V} = -\beta \Delta T = \cdots = -0.33\%\]
Example: thermometer, $V_{\text{cyylinder}} \ll V_{\text{sphere}}$

What is its calibration slope $\frac{\partial x}{\partial T}$?

\[
\Delta V \frac{V}{V'} \equiv \beta \Delta T
\]

\[
a \delta x \approx \Delta V_{\text{fl}} - \Delta V_{\text{sphere}} = \beta_{\text{fl}} V_{\Delta T} - \beta_{\text{gl}} V_{\Delta T}
\]

\[
\frac{\partial x}{\partial T} = \frac{V}{a} (\beta_{\text{fl}} - \beta_{\text{gl}})
\]

Other temperature coefficients:

Resistivity ρ:

\[
\rho = \rho(T=T_0)(1 + \alpha_1(T - T_0) + \alpha_2(T - T_0)^2 + \ldots)
\]

Warning: ρ is > 0 for metals, but < 0 for semiconductors

\[
\sigma = \frac{1}{\rho} = \ldots \equiv \sigma(T=T_0)(1 - \alpha_1(T - T_0))
\]

<table>
<thead>
<tr>
<th>Thermal runaway possible</th>
<th>Thermally stable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ideal gas temperature scale
Uses reference temp:
Triple point - co-existence of ice, water, steam

\[
\text{call it } \theta_{tr}.
\]

defines \(P \propto \theta \) for constant volume of gas \((P \text{ is pressure } \equiv \text{Force per unit area}) \)
But gases are not (quite) ideal

e.g. consider boiling temp \(\theta_s \) at some \(P \):

\[
\frac{\theta_s}{\theta_{tr}} \text{ is different for different gases and at different densities.}
\]

At very low density or pressure,

all gases \(\rightarrow \) ideal, \(: \frac{\theta_s}{\theta_{tr}} \rightarrow \text{ same limit} \)

\[
T = T_{tr} \cdot \lim_{P_{tr} \rightarrow 0} \left(\frac{P}{P_{tr}} \right)_V
\]

where \(T_{tr} = 273.16 \text{ K} \)

Why 273.16? This defines the Kelvin so that

\[
\Delta T = 1 \text{ K} \iff \Delta T = 1 ^\circ \text{C}
\]

(Working definition is more complicated)

Celsius Scale: \(T_C = T - 273.15^\circ \)

\[
T_C = 0 ^\circ \text{C water freezes} \\
T_C = 100 ^\circ \text{C water boils} \quad \text{at } P_A
\]

Fahrenheit Scale
Heat

Definition: that which is transferred between a system and its surroundings as result of ΔT only.

Joule showed:

mechanical energy \rightarrow heat \textit{(by friction etc.)}.

\begin{align*}
\text{Carnot showed} & \hspace{1cm} \text{heat at high } T \rightarrow \text{heat at low } T + \text{work} \\
\therefore \text{ measure heat as energy; i.e. S.I. unit. Joule (J)}
\end{align*}

Heat Capacity: (for a body) $C = \frac{\Delta Q}{\Delta T}$ \textit{extensive quantity}

Specific Heat: (of a substance) $c = \frac{\Delta Q}{M \Delta T}$ \textit{intensive quantity}

\begin{align*}
e.g. \hspace{0.5cm} c_{\text{H}_2\text{O}} &= 4.2 \text{ kJ.kg}^{-1}\text{K}^{-1}, \quad c_{\text{Al}} = 900 \text{ J.kg}^{-1}\text{K}^{-1}
\end{align*}

Latent Heat: heat required for change of phase (at constant T).

Example. A 240 V kettle has a working resistance of 50 Ω. Put in 500 ml of water at 20 °C and turn on. How long before it boils dry? (Specific heat of $c_w = \text{water} = 4.2 \text{ J.kg.K}^{-1}$, Latent heat of vaporisation $L_{\text{vap}} = 2.3 \text{ MJ.kg}^{-1}$.)

Energy in = power.$t = \frac{V^2}{R}$.$t = (1.15 \text{ kW}).t$ = Q to raise T of water + Q to evaporate water

= $m_w c_w (T_f - T_i) + m_w L_{\text{vap}}$

= (0.5 kg) (4.2 10^3 J.kg$^{-1}$K$^{-1}$) (100 - 20)$^\circ$C + (0.5 kg) (2.3 10^6 J.kg$^{-1}$)

= 168 kJ + 1.15 MJ = 1.32 MJ

$\therefore \hspace{0.5cm} t = \frac{1.32 \text{ MJ}}{1.15 \text{ kW}} = \ldots = 1150 \text{ s} = 19 \text{ minutes}$

(it boils after $\frac{168 \text{ kJ}}{1.15 \text{ kW}} = 2.5 \text{ mins}$)
Example A mass m_w of water at temperature T_1 is added to a mass m_i of ice at temperature T_2. (No heat is lost to the environment.) What is the final temperature at thermal equilibrium?

\exists 4 possible outcomes:

i) $T > 0 \, ^\circ C$ (all ice melts)

ii) $T = 0 \, ^\circ C$ & some ice melts

iii) $T = 0 \, ^\circ C$ & some water freezes

iv) $T < 0 \, ^\circ C$ (all water freezes)

To warm ice to 0° requires $Q_i = m_i c_i (0^\circ - T_i)$

To cool water to 0° loses $Q_w = m_w c_w (T_w - 0^\circ)$

To melt all ice requires $Q_m = m_i L$

To freeze all water loses $Q_f = m_w L$

If $Q_w > Q_i + Q_m$, then all ice melts and final $T > 0$

Q lost by water = Q gained by ice

$m_w c_w (T_w - T) = m_i c_i (0^\circ - T_i) + m_i L + m_i (T - 0^\circ)$

heat ice melt it warm melted ice

$T (m_i + m_w c_w) = m_i c_i T_i + m_w c_w T_w - m_i L$

$T =$

If $Q_i + Q_m > Q_w > Q_i$, then all ice melts but $T = 0^\circ$

Q lost by water = Q gained by ice

$m_w c_w (T_w - 0^\circ) = m_i c_i (0^\circ - T_i) + m_m L$

heat all ice melt some ice $m_m < m_i$

$m_m =$

etc for $Q_i > Q_w + Q_f$ and $Q_w + Q_f > Q_i > Q_w$

all water freezes some water freezes

Work: energy transmitted from one system to another without ΔT
or transfer of Q.

e.g. work done by force F

$dW = F \cdot ds$

e.g. work done against pressure P

\[P = \frac{\text{force}}{\text{area}} \]

\[
\begin{array}{c}
\text{P} \\
\hline
\text{F}
\end{array}
\]

$dW = F \cdot ds = PA \cdot ds = PdV$

Example 1 kg water, initially at 20˚C, is boiled away at P_A. How much of the input energy goes as work?

water volume = 10^{-3} m3

Steam: $V_f >> V_i$

$W = PV_f = n RT = \frac{\text{mass}}{\text{mol. mass}} RT = \ldots = 172 \, \text{kJ}$

cf. Heat to raise to 100˚C

$Q_1 = C m \Delta T = \ldots = 336 \, \text{kJ}$

Heat to transition $Q_2 = mL = \ldots = 2.26 \, \text{MJ}$
Internal Energy

Heat dQ added to a system increases its internal energy U. Work dW done by the system lowers its internal energy.

1st Law of Thermodynamics
\[dU = dQ - dW \]
where U is a state function

Kinetic Theory of Gases

Ideal gas equation of state
(\(\equiv \) limit for all gases at low \(\rho \)):
\[PV = nRT = NkT \]
- no. of moles
- no. of molecules
- gas constant
- Boltzmann's Constant
\[= 8.31 \text{ JK}^{-1} \quad = \frac{R}{N_A} = 1.38 \times 10^{-23} \text{ JK}^{-1} \]

Example. Spherical balloon. Skin (total) has mass \(\sigma = 10 \text{ g.m}^{-2} \).
How big does it need to be to lift 200 kg load if (i) it contains hot air at 100°C? (ii) Helium at STP?

Archimedes: \(W_{\text{displaced}} = W_{\text{balloon}} \)
\[\frac{4}{3} \pi r^3 \rho_{\text{air}} = \frac{4}{3} \pi r^3 \rho_{\text{gas}} + 4 \pi r^2 \sigma + mg \]
\[r^3 (\rho_{\text{air}} - \rho_{\text{gas}}) - 3 \pi r^2 = \frac{3}{4} m \quad \text{(or solve cubic)} \]

\[r \approx \sqrt[3]{3m} \quad \frac{4 \pi \rho_{\text{air}} (1 - \rho_{\text{gas}}/\rho_{\text{air}})}{4 \pi \rho_{\text{air}} (1 - \rho_{\text{gas}}/\rho_{\text{air}})} \]

He: \(\rho_{\text{gas}}/\rho_{\text{air}} = 4/30 \)
\[\rightarrow \quad r \approx 3.6 \quad \text{m} \]

Hot air: \(\rho = \frac{Nm}{V} = \frac{Pm}{kT} \)
\[\therefore \quad \frac{\rho_{\text{hot}}}{\rho_{\text{cold}}} = \frac{T_{\text{cold}}}{T_{\text{hot}}} = \frac{273}{373} \quad \text{K} \quad \rightarrow \quad r \approx 5.3 \quad \text{m} \quad \text{check approx^n} \]
Kinetic theory: Ideal Gas Postulates

i) gas made of (identical) molecules

ii) these obey Newton's laws, with random motion

iii) no. of molecules is large \((\sim \text{Avagadro's number}) \)

iv) total volume molecules is negligible fraction \((\sim 10^{-3}) \)

v) no interaction except during collision \((\text{average } U_{\text{interaction}} < 10^{-4} \text{ K.E.}) \)

vi) collisions elastic, negligible duration. \((\sim 10^{-3} \text{ of time}) \)

parallel plates, area A. Volume V = AL.

N molecules (mass m) of an ideal gas.

Each collision →

\[\Delta \text{momentum} = 2mv_x \]

\[\text{time between collisions} \quad t = 2L/v_x. \]

\[\vec{F} = \frac{\Delta \text{momentum}}{\Delta \text{time}} = \frac{2mv_x}{2L/v_x} = \frac{mv_x^2}{L} \]

\[\therefore \quad F \text{ on all } N \text{ molecules is} \]

\[F_{\text{all molecules}} = \frac{Nmv_x^2}{L} = PA \]

\[v^2 = v_x^2 + v_y^2 + v_z^2; \quad \text{random motion} \implies \bar{v_x^2} = \bar{v_y^2} = \bar{v_z^2} \implies \bar{v_x^2} = \frac{1}{3} \bar{v^2}, \text{ so:} \]

\[P \cdot A \cdot L = N \cdot \bar{v_x^2} = \frac{N}{3} \cdot m \cdot \bar{v^2} \]

\[\rho = \frac{N \cdot m}{3\cdot V} \cdot \bar{v^2} = \frac{1}{3} \rho \cdot \bar{v^2} \]

Molecular speeds:

\[v_{\text{rms}} \quad \text{root mean square velocity} \]

\[v_{\text{r.m.s.}} \equiv \sqrt{\bar{v^2}} \]

c) What is \(v_{\text{rms}} \) in atmosphere? (approximate it as an ideal gas at \(P_A \), with \(\rho_A = 1.3 \text{ kg.m}^{-3} \))

\[\rightarrow v_{\text{rms}} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3 \times 10^5}{1.3}} = 480 \text{ ms}^{-1} \]

Meaning of temperature:

We had \[PV = \frac{N}{3} \cdot m \cdot \bar{v^2} \]

\[\frac{1}{2} m \cdot \bar{v^2} = \bar{\varepsilon} \equiv \text{average K.E. per molecule} \]

But T defined by (1 and 5): \[PV = NkT \]

\[\therefore \quad \bar{\varepsilon} = \frac{1}{2} m \cdot \bar{v^2} = \frac{3}{2} \frac{PV}{N} = \frac{3}{2} kT \quad (7) \]

For ideal gas all energy \(E \) is kinetic so:

\[E = N \bar{\varepsilon} = \frac{3}{2} NkT \quad (8) \]

\(T \sim \text{average K.E. of molecules in an ideal gas.} \)

3 degrees of motional freedom (x, y, z)
i.e. \(\frac{1}{2} kT \) per degree of freedom \hspace{1em} (At ordinary temperatures, \(kT \approx 4 \times 10^{-21} \text{ J} \))

molecular speeds again:

\[
\frac{1}{2} m v^2 = \frac{3}{2} kT
\]

\[v_{\text{r.m.s.}} = \sqrt{\frac{v^2}{m}} = \sqrt{\frac{3kT}{m}}\]

Example: What is \(v_{\text{rms}} \) of O\(_2\), N\(_2\), and H\(_2\) at \(T = 293 \text{ K} \)?

\[
(7) \quad v_{\text{rms}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3kT}{N_A \text{ mol wt}}}
\]

for O\(_2\):

\[
= \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 293 \times 6.02 \times 10^{23}}{0.032}}
\]

\[= 478 \text{ ms}^{-1}\]

for N\(_2\) \(\rightarrow 511 \text{ ms}^{-1} \) \hspace{1em} for H\(_2\) \(1.91 \text{ kms}^{-1} \) \hspace{1em} c.f. \(v_{\text{escape}} = 11 \text{ kms}^{-1} \)

Note that for air \(v_{\text{rms}} > v_{\text{sound}} \)

But recall from waves:

\[v_s = \sqrt{\frac{K_{\text{ad}}}{\rho}} = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma kT}{m}}\]

so \(\frac{v_{\text{rms}}}{v_s} = \sqrt{\frac{\gamma}{3}} \approx 1.5 \) \hspace{1em} \(\gamma \) discussed later.

Example What is the \(v_{\text{rms}} \) due to thermal motion (Brownian motion) of: pollen grain (m \(\sim 10^{-15} \text{ kg} \)) and apple (m \(\sim 0.2 \text{ kg} \))

\[v_{\text{rms}} = \sqrt{\frac{3kT}{m}} \text{ pollen} \Rightarrow 2 \text{ mm s}^{-1} \quad (\text{Brownian motion 1st analysed by Einstein, 1904})\]

Example. Spherical balloon. Skin (total) has mass \(\sigma = 10 \text{ g.m}^{-2} \). How big does it need to be to lift 200 kg load if (i) it contains hot air at 100 C? (ii) Helium at STP?

Archimedes: \(W_{\text{displaced}} = W_{\text{balloon}} \)

\[
\frac{4}{3} \pi r^3 \rho_{\text{air}} g = \frac{4}{3} \pi r^3 \rho_{\text{gas}} g + 4\pi r^2 \sigma g + mg
\]

\[r^3(\rho_{\text{air}} - \rho_{\text{gas}}) - 3\sigma^2 = \frac{3}{4\pi} m \quad \text{(or solve cubic)}\]

\[r \approx \frac{3m}{4\pi \rho_{\text{air}}(1 - \rho_{\text{gas}}/\rho_{\text{air}})}\]

He: \(\rho_{\text{gas}}/\rho_{\text{air}} = 4/30 \quad \Rightarrow r \approx 3.6 \text{ m} \)

Hot air: \(\rho = \frac{N m}{V} = \frac{P m}{kT} \)

\[\therefore \quad \frac{\rho_{\text{hot}}}{\rho_{\text{cold}}} = \frac{T_{\text{cold}}}{T_{\text{hot}}} = \frac{273 \text{ K}}{373 \text{ K}} \quad \Rightarrow r \approx 5.3 \text{ m} \]

*check approx
Special Cases

1. **Isobaric Process** - p constant

 $W = \int P \, dV = P(V_f - V_i)$

 $\therefore \Delta U = \Delta Q - P\Delta V$

 example $\Delta Q = M L$ (mass, latent heat)

 $\Delta U = ML - P\Delta V$

 Also, things done at atmospheric pressure

2. **Isochoric** – volume constant

 $\therefore W = 0$, $\therefore \Delta Q = \Delta U$

3. **Adiabatic Process:** no heat flow, $\Delta Q = 0$

 either fast or insulated

 e.g. compression stroke in engine

 sound wave compression

 most muscle contractions

 Free expansion: open tap

 No work done, Experimentally, find $\Delta Q = 0$

 $\therefore \Delta U = 0$

 $\therefore U$ of ideal gas doesn't depend on ρ, i.e. $U = U(T)$

 Special cases of the First Law

 $\Delta U = Q - W$

 Process

 Adiabatic $Q = 0$ $\therefore \Delta U = -W$

 Constant volume $W = \int PdV = 0$ $\therefore \Delta U = Q$

 Closed cycle $\Delta U = 0$ $\therefore Q = W$

 Free expansion $Q = W = 0$ $\therefore \Delta U = 0$

For a gas, specific heat at constant pressure (c_p) is greater than specific heat at constant volume (c_v).

Why?

The ratio c_p/c_v is called γ.

$PV^\gamma = \text{constant for adiabatic process}$

Note: pressure varies more strongly with change in V for adiabatic than for isothermal, where $PV^I = \text{constant.}$
Example
Compressed gas \((P_1, T_1)\) escapes from a cylinder into the atmosphere \((P_A, T)\).
Assume rapid, adiabatic expansion, no initial mixing. How cold does it get?

Adiabatic: \(PV^{\gamma} = \text{constant}\)

\[\therefore \quad \frac{V_2}{V_1} = \left(\frac{P_1}{P_2} \right)^{1/\gamma} \]

\[\therefore \quad \frac{T_2}{T_1} = \frac{P_2 V_2}{P_1 V_1} = \left(\frac{P_2}{P_1} \right)^{1/\gamma} = \left(\frac{P_2}{P_1} \right)^{1 - 1/\gamma} \]

Example. Same problem but for car tyre:
"p" (gauge pressure) = 180 kPa. Take \(\gamma = 1.40\), \(T = 300\) K. Release some air into atmosphere \((P_2 = P_A = 101\) kPa). What is temperature of emerging air?

\(P_1 = "p" + P_A = 281\) kPa

\(\therefore \quad T_f = \ldots = 224\) K = -49°C

Example (a peculiar heat cycle)

\(a\) Isothermal expansion at \(T_H\)

\(b\) cooling at const. \(V\)

\(c\) Isothermal compression

\[\Delta U \quad \Delta W \quad \Delta Q \]

<table>
<thead>
<tr>
<th></th>
<th>(\Delta U)</th>
<th>(\Delta W)</th>
<th>(\Delta Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>(-nC_v(T_H - T_C))</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>(-nC_v\ln(V_2/V_1))</td>
<td>(-nC_v(T_H - T_C))</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>(-nRT_C\ln(V_1/V_2))</td>
<td>(-nRT_C\ln(V_2/V_1))</td>
</tr>
<tr>
<td>d</td>
<td>(nC_v(T_H - T_C))</td>
<td>0</td>
<td>(nC_v(T_H - T_C))</td>
</tr>
</tbody>
</table>

\[\Sigma \quad 0 \quad nR(T_H - T_C)\ln(V_2/V_1) \quad nR(T_H - T_C)\ln(V_2/V_1) \]

Efficiency = \(\frac{\text{work out}}{\text{heat in}} = \left(\frac{R(T_H - T_C)\ln(V_2/V_1)}{RT_H\ln(V_2/V_1) + C_v(T_H - T_C)} \right)\)

all terms > 0

\(T_H - T_C \leq T_H\) \(\therefore \text{efficiency < 100\%}\)
P-V diagrams and thermal cycles

Simple cycles typical of those found in tut and exam questions

Idealised cycles sometimes approximated

Heat conduction

Reservoirs at T_H and at T_C. H is rate of heat transfer through a material in steady state.

$$H \equiv kA \frac{T_H - T_C}{l}$$

defines the thermal conductivity k

H in W, so k in W.m$^{-1}$.K$^{-1}$.

Copper 401 W.m$^{-1}$.K$^{-1}$
Stainless Steel 14
Glass 1
Water 0.5
Pine (wood) 0.11
Dry air 0.026

Thermal resistance or R-value sometimes used for building materials

$$R \equiv \frac{l}{k}$$

so $$H = A\frac{\Delta T}{R}$$

(High conductivity, low R value and vice versa.)
Example. What is the R value of 1 cm pine?

When his Austudy is cut off, a student lives in a pine packing crate, area 8 m2, thickness 1.0 cm. If the shivering student produces 300 W, which is lost by conduction through the crate, how much warmer is it inside the crate?

\[
R \equiv \frac{l}{k} = 0.09 \text{ K.m}^2\text{W}^{-1}
\]

\[
H \equiv kA \frac{T_H - T_C}{l} \quad \text{or} \quad A \frac{dT}{R}
\]

\[
T_H - T_C = \frac{lH}{kA}
\]

\[
= \frac{0.010 \text{ m} \times 300 \text{ W}}{0.11 \text{ W.m}^{-1}.\text{K}^{-1} \times 8 \text{ m}^2} = 3 \text{ K. Other benefits: wind, rain, radiation}
\]

Example. To reduce thermal noise, a low temperature circuit is immersed in liquid nitrogen (77 K, $L = 199 \text{ kJ.kg}^{-1}$). It is connected to the outside circuitry by 3 well-insulated copper wires, length $l = 100 \text{ mm}$, diameter 0.3 mm. What is the rate of N_2 evaporation due to the heat conducted down the wires?

\[
\text{Power to evaporate } \text{N}_2 = \text{ heat transfer}
\]

\[
L \frac{dm}{dt} = H \equiv kA \frac{T_H - T_C}{l}
\]

\[
\frac{dm}{dt} = kA \frac{T_H - T_C}{L} = \ldots = 90 \mu\text{g.s}^{-1} = 340 \mu\text{g.hr}^{-1}
\]

Example. A flask of coffee, initially at 90 °C, cools to 81 °C in one hour in 20 °C atmosphere. How long will it take to cool to 60 °C?

\[
H = kA \frac{T - T_C}{L}
\]

\[
H = - \frac{dQ}{dt} = - \frac{mc dT}{dt}
\]

\[
\frac{dT}{dt} = - \frac{kA}{mc} \frac{T - T_C}{L}
\]

Characteristic time: \[
\tau = \frac{mcL}{kA} \quad \text{Solve DE} \rightarrow \]

\[
T = T_C + (T_0 - T_C) e^{-t/\tau}
\]

81 °C = 20 °C + (70 °C)e^{-(1 h)/\tau}

\[
\therefore \quad \tau = 7.3 \text{ h} \quad \ldots \rightarrow 4.1 \text{ h to cool to 60 °C}
\]
Heat radiation

Rate of transfer by radiation

\[H = e\sigma AT^4 \]

Stefan-Boltzmann constant

\[\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2}\text{K}^{-4} \]
\[e = \text{emissivity} \quad 0 < e < 1 \]

\(e \to 0 \) for shiny surfaces, \(e \to 1 \) for black surfaces

Note that a good emitter is also a good absorber.

Black body radiation

Black body has \(e \equiv 1 \).

'Black body' is in equilibrium with its radiation

In equilibrium with black body radiation, object comes to same temperature as the black body radiation.

Equilibrium: \(\text{radiation out} = \text{radiation in} \)

\[\text{radiation out} = e\sigma AT_{\text{ob}}^4 = e\sigma AT_{\text{rad}}^4 \]
\[\therefore \text{radiation in} = e\sigma AT_{\text{rad}}^4 \]

In black body radiation at temp \(T_{\text{rad}} \)

\[H_{\text{nett}} = e\sigma A(T^4 - T_{\text{rad}}^4) \]

Example.

- A heat sink
- \(T = 50 \degree C \)
- Circuit

Dark-coloured heat sink (\(e \sim 1 \)) mounted on layer of (electrical) insulator with \(k = 1.2 \text{ Wm}^{-1}\text{K}^{-1} \). Area is 200 mm\(^2\), \(d = 0.1 \text{ mm} \).

Circuit must be kept at \(T \leq 50 \degree C \) in an environment at \(T = 30 \degree C \). What is max \(H \) produced by circuit?

Solve: find \(T \) of sink in steady state

Substitute to get \(H_{\text{max}} \)

In steady state, heat sink has

Conduction in = nett radiation out

\[kA \frac{T_{\text{circ}} - T_{\text{sink}}}{d} = e\sigma A(T_{\text{sink}}^4 - T_{\text{env}}^4) \]
\[\frac{k}{\sigma d} (T_{\text{circ}} - T_{\text{sink}}) = (T_{\text{sink}}^4 - T_{\text{env}}^4) \]

Hmm, which restricts heat more, radiation or conduction?
Linearise the messy term

\[T_s^4 - T_e^4 = (T_s - T_e)(T_s^3 + T_s^2 T_e + T_s T_e^2 + T_e^3) \]
\[\equiv (T_s - T_e)4T_e^3 \quad \text{if} \quad T_s - T_e \ll T_e. \]
\[\frac{k}{4T_e^3 \sigma d} (T_c - T_s) \equiv T_s - T_e \]

numbers: \[\frac{k}{4T_e^3 \sigma d} \equiv 2000, \]
\[\therefore T_c \equiv T_s \]
\[\therefore H_{\text{max}} \equiv \sigma A(T_s^4 - T_e^4) = 28 \text{ mW} \]

Example. Person gets out of hot shower with 1.5 m\(^2\) of skin (\(e = 0.7\)) at 35 °C. The walls, floor and ceiling are at 12 °C (treat them as black body). (bath mat is good insulator)
How fast do you lose energy?
\[H = H_{\text{lost}} - H_{\text{gained}} = e \sigma A(T_{\text{skin}}^4 - T_{\text{rad}}^4) = = 143 \text{ W.} \]

Example

\[\text{Two volumes of same gas. Open tap. What pressure?} \]
Gas redistributes until P equal.
5 unknowns: \(N_1, N_2, N_1', N_2', P\)

Before \[N_1 = \frac{P_1 V_1}{RT_1} \quad N_2 = \frac{P_2 V_2}{RT_2} \]
After \[N_1' = \frac{P V_1}{RT_1} \quad N_2' = \frac{P V_2}{RT_2} \]
Conservation: \[N_1 + N_2 = N_1' + N_2' \quad \text{Solve......} \]

Example

\[T_s \]

\[\text{Circuit inside black case, } d = 2.5 \text{ mm, area } A = 0.02 \text{ m}^2, \text{ thermal conductivity } k = 0.02 \text{ W.K}^{-1}.\text{m}^{-1}. \text{ Assume internal temperature uniform. Surroundings and the case have emissivity of 1.0. In steady state:} \]
Outer surface of the case is at 35 °C, surroundings at 20°C. What is \(T_1\)?

Steady state: heat radiation loss = heat conduction
\[A \sigma (e_o T_o^4 - e_s T_s^4) = \frac{kA}{d} (T_1 - T_o) \]
\[T_i = \frac{d \sigma}{k} (T_o^4 - T_s^4) + T_o \]
\[= \frac{(2.5 \cdot 10^{-3} \text{ m}) \times (5.67 \cdot 10^{-8} \text{ Wm}^{-2} \text{K}^{-4})}{0.02 \text{ W.K}^{-1}.\text{m}^{-1}} \left((308 \text{ K})^4 - (293 \text{ K})^4 \right) + 35 \text{ °C} \]
\[= 47 \text{ °C} \]
A note about steady state (T constant) in one dimension, \(H = kA \frac{TH - TC}{l} \) becomes heat flux \(\frac{H}{A} = k \frac{dT}{dx} \) In steady state, rate of heat arriving = rate of heat departing In steady state, heat flux is uniform. So \(k_1 \left(\frac{dT}{dx} \right)_1 = k_2 \left(\frac{dT}{dx} \right)_2 \)

Getting to steady state: (details usually complicated)

In this situation

\(k_1 \left(\frac{dT}{dx} \right)_{\text{left}} > k_1 \left(\frac{dT}{dx} \right)_{\text{right}} \)
so the middle region receives more heat than it loses – so its temperature rises.

At boundary of vacuum:

Heat conduction to the surface = heat radiation from the surface