Q1. \[F = (m_1 + m_2) a \]
(a) \[a = \frac{F}{m_1 + m_2} = \frac{3}{1 + 2} \text{ms}^{-2} = 1.0 \text{ms}^{-2} \]
Internal force: \[F_{\text{int}} = m_2 a = ... = 1.0 \text{N} \]

Q2. In all cases, the force on the man is \[N - mg = ma \].
(a) \[N = mg = 980 \text{N} \]
(b) \[N = mg = 980 \text{N} \]
(c) \[N - mg = ma \Rightarrow N = m(a + g) = 100 \times 11.8 = 1180 \text{N} \]
(d) \[mg - N = ma \Rightarrow N = m(g - a) = 680 \text{N} \]
(e) \[mg - N = ma \Rightarrow N = 580 \text{N} \]
(f) \[N - mg = ma \Rightarrow N = m(g + a) = 1480 \text{N} \]

Q3. (a)
Force on \(m_1 \) : \[m_1 g \sin \theta - T = m_1 a \]
Force on \(m_2 \) : \[T - m_2 g = m_2 a \]
Eliminate \(T \) : add
\[m_1 g \sin \theta - m_2 g = (m_1 + m_2) a \]
\[a = \frac{(m_1 g \sin \theta - m_2 g)/(m_1 + m_2)}{\text{-0.10g} \}
\[m_1 g \sin \theta - T = m_1 a \]
\[T = m_1 g \sin \theta + m_1 a = 18 \text{N} \]

Q4. \[T \]
\[\theta \]
\[\bullet \]
\[mg \]
(1) \[T \cos \theta = mg \]
(2) \[T \sin \theta = ma \]
\[\tan \theta = a / g \]
\[a = g \tan \theta \]
(N2 in vertical)
(N2 in horizontal)
divide (1) by (2)
Q5.

\[L \cos \theta = mg \quad \text{(N2 in vertical)} \]
\[L \sin \theta = \frac{mv^2}{r} \quad \text{(N2 in horizontal)} \]
\[\therefore \tan \theta = \frac{v^2}{rg} \quad \text{(divide eqns)} \]
\[r = \frac{v^2}{g \tan \theta} = \frac{(480/3.6)^2}{(9.8 \tan 40)} = 2.2 \text{ km} \]

Q6.

Maximum friction force = \(\mu N = \mu F = 36 \text{ N} \).

Weight = \(mg = 29 \text{ N} \).
The block will not move.

Actual friction force = 29.4 N.

\[F = \sqrt{60^2 + 29.4^2} = 67 \text{ N} \]
\[\theta = \tan^{-1}(60/29.4) = 63.9^0 \]
\[\theta = 64^0 \]

Q7.

(a) If the string doesn’t stretch, the acceleration of both masses has the same magnitude, a, but opposite directions. Let’s suppose that the 5kg mass accelerates down with a, and that the 2 kg mass accelerates up with a. (If this supposition is incorrect, then a will turn out to be negative.)

\[N2 \text{ on } 5 \text{ kg (} m_1 \text{)} \quad m_1 g - T = m_1 a \]
\[N2 \text{ on } 2 \text{ kg} \quad T - m_2 g = m_2 a \]
\[(m_1 + m_2) a = (m_1 - m_2) g \]
\[\therefore a = (m_1 - m_2) g / (m_1 + m_2) = 20 / 7 \text{ g} \]

(b) 2 kg mass:

\[v = at = 1.26m/s \]
\[y = \frac{1}{2}at^2 = 0.19m \]
\[v = -1.26m/s \]
\[y = 1.29 - 0.19 = 1.1m \]

(c) \(a = -g \)

(d) Mass A:

\[v_0 = 1.26, y_0 = 0.19 \]
\[y = y_0 + v_0 t + \frac{1}{2}at^2 \]
\[0 = 0.19 + 1.26t - 4.9t^2 \]
\[\therefore t = 0.36s \]
Mass B:

\[v_0 = -1.26, y_0 = 1.1. \]
\[y = 1.1 - 1.26t - 4.9t^2 \]
\[y = 0 \implies t = 0.36s \]

Q8.

(a)

\[F = ma = -\beta v^2 \]
\[\frac{dv}{dt} = -\frac{\beta}{m} v^2 \]
\[-\frac{dv}{v^2} = \frac{\beta}{m} \, dt \]
\[\frac{1}{v} = \frac{1}{v_0} + \frac{\beta t}{m} \]
\[\therefore v = \frac{mv_0}{\beta v_0 t + m} \]

(b)

\[e^{\frac{\beta x}{m}} = \frac{m + \beta v_0 t}{m} \]
\[\therefore v = v_0 \exp\left(-\frac{\beta x}{m}\right) \]
Newton 2 for \(m_2 \):
\[F = m_2 g \]

Newton 2 for \(m_1 \) (vertical):
\[0 = m_2 a_{vert} = F \sin \theta - m_1 g = m_2 g \sin \theta - m_1 g \]
\[\sin \theta = \frac{m_1}{m_2} \]

Newton 2 for \(m_1 \) (horizontal):
\[m_1 a_{centrip} = m_1 r \omega^2 = F \cos \theta = m_2 g \cos \theta \]
substitute for \(r \) and \(\omega \):
\[m_1 (R \cos \theta) \left(\frac{2\pi}{T} \right)^2 = m_2 g \cos \theta \]
\[T = 2\pi \sqrt{\frac{m_1 R}{m_2 g}} \]

iii) The tension in both ends of the string is \(F \), so, from symmetry, the line of \(N \) bisects the angle between the segments of the string. So \(N \) is at an angle to the vertical
\[\alpha = (90^\circ - \theta)/2 \]
\[N = 2F \cos \alpha \]

iv) With finite friction, the tension in the string supporting \(m_1 \) may be greater than or less than \(m_2 g \) by the limit of the static friction. So a range of \(\theta \), both greater than and less than the value found above, is possible.

v & vi) \[0 < \theta < \pi/2, \text{ so } 0 < m_1/m_2 < 1 \]

If \(m_1 > m_2 \), then the weight of \(m_1 \), which equals the tension in the string, is not great enough both to support \(m_1 \) vertically and to provide centripetal acceleration. So \(m_2 \) rises until it hits the bottom of the tube.