PHYS1131 HIGHER PHYSICS 1A
SOLUTIONS - TUTORIAL 3

Q1.

(a) \[F = (m_1 + m_2)a \]

\[\therefore a = \frac{F}{(m_1 + m_2)} = \frac{3}{(1 + 2)} \text{ms}^{-2} = 1.0 \text{ms}^{-2} \]

Internal force: \[F \text{int} = m_2a = ... = 1.0 \text{N} \]

Q2.

In all cases, the force on the man is \(N - mg = ma \).

(a) \[N = mg = 980 \text{N} \]

(b) \[N = mg = 980 \text{N} \]

(c) \[N - mg = ma \Rightarrow N = m(a + g) = 100 \times 11.8 = 1180 \text{N} \]

(d) \[mg - N = ma \Rightarrow N = m(g - a) = 680 \text{N} \]

(e) \[mg - N = ma \Rightarrow N = 580 \text{N} \]

(f) \[N - mg = ma \Rightarrow N = m(g + a) = 1480 \text{N} \]

Q3.

(a) \[\text{Force } m_1: \hspace{5mm} g \sin \theta - T = m_1a \]

\[\text{Force } m_2: \hspace{5mm} T - m_2g = m_2a \]

Eliminate \(T \): add:

\[m_1g \sin \theta - m_2g = (m_1 + m_2)a \]

\[a = \frac{(m_1g \sin \theta - m_2g)/(m_1 + m_2)}{-0.10g} \]

\[m_1g \sin \theta - T = m_1a \]

\[T = m_1g \sin \theta + m_1a = 18 \text{N} \]

Q4.

\[\begin{align*}
T & \quad (1) \hspace{5mm} T \cos \theta = mg \\
\theta & \quad \text{(N2 in vertical)} \\
mg & \quad (2) \hspace{5mm} T \sin \theta = ma \\
\tan \theta & \quad \text{divide (1) by (2)} \\
& \quad \text{a} / \text{g} \\
a & \quad \text{g} \tan \theta
\end{align*} \]
Q5.

Maximum friction force = \(\mu_s N = \mu_s F = 36 \) N.
Weight = \(mg = 29 \) N.
The block will not move.
Actual friction force = 29 N.

\[
F = \sqrt{60^2 + 29.4^2} = 67N
\]

\[
\theta = \tan^{-1}(60/29.4) = 63.9^0
\]

\[
\theta = 64^0
\]

Q6.
(a) If the string doesn’t stretch, the acceleration of both masses has the same magnitude, \(a \), but opposite directions. Let’s suppose that the 5kg mass accelerates down with \(a \), and that the 2 kg mass accelerates up with \(a \). (If this supposition is wrong, then \(a \) will turn out to be negative.)

\[
\begin{align*}
N2 &\text{ on } 5 \text{ kg } (m_1) & m_1g - T = m_1a \\
N2 &\text{ on } 2 \text{ kg } & T - m_2g = m_2a \\
(m_1 + m_2)a &= (m_1 - m_2)g \\
\therefore a &= (m_1 - m_2)g \div (m_1 + m_2) = 20 \div 7g
\end{align*}
\]

\[
v = at = 1.26 \text{ m/s}
\]

\[
y = 1/2at^2 = 0.19m
\]

\[
v = -1.26 \text{ m/s}
\]

\[
y = 1.29 - 0.19 = 1.1m
\]

(b) 2 kg mass:

\[
y = 1/2at^2 = 0.19m
\]

5 kg mass:

\[
y = 1.29 - 0.19 = 1.1m
\]

(c) \(a = -g \)

(d) Mass A:

\[
v_0 = 1.26, y_0 = 0.19
\]

\[
y = y_0 + v_0t + 1/2at^2
\]

\[
0 = 0.19 + 1.26t - 4.9t^2
\]

\[
\therefore t = 0.36s
\]

Mass B:

\[
v_0 = -1.26, y_0 = 1.1
\]

\[
y = 1.1 - 1.26t - 4.9t^2
\]

\[
y = 0 \therefore t = 0.36s
\]
Past exam question

i) Newton 2 for m_2:
\[F = m_2g \]
Newton 2 for m_1 (vertical):
\[0 = m_2a_{\text{vert}} = F \sin \theta - m_1g = m_2g \sin \theta - m_1g \]
\[\sin \theta = \frac{m_1}{m_2} \]

ii) Newton 2 for m_1 (horizontal):
\[m_1a_{\text{centrip}} = m_1r\omega^2 = F \cos \theta = m_2g \cos \theta \]
substitute for r and ω:
\[m_1(R \cos \theta) \left(\frac{2\pi}{T}\right)^2 = m_2g \cos \theta \]
\[T = 2\pi \sqrt{\frac{m_1R}{m_2g}} \]

iii) The tension in both ends of the string is F, so, from symmetry, the line of N bisects the angle between the segments of the string. So N is at an angle to the vertical
\[\alpha = \frac{(90^\circ - \theta)}{2} \]
\[N = 2F \cos \alpha \]

iv) With finite friction, the tension in the string supporting m_1 may be greater than or less than m_2g by the limit of the static friction. So a range of θ, both greater than and less than the value found above, is possible.

v&vi) \[0 < \theta < \pi/2, \text{ so } 0 < m_1/m_2 < 1 \]

If $m_1 > m_2$, then the weight of m_1, which equals the tension in the string, is not great enough both to support m_1 vertically and to provide centripetal acceleration. So m_2 rises until it hits the bottom of the tube.