## Thermal Physics

Thermodynamics:
laws relating macroscopic variables ( $\mathrm{P}, \mathrm{V}, \mathrm{T}$ etc.).
Statistical Mechanics: molecular explanation.
Difference between heat and temperature
Extensive property $\quad \propto$ amount of material
Intensive property doesn't depend on amount
Which of heat and temperature is intensive?
Which relates to sense of hotness?

## Define temperature:

Thermal equilibrium:
Thermal properties do not change with time

## Definition of Temperature (T):

T is equal in any 2 bodies at thermal equilibrium.

## Zero ${ }^{\text {th }}$ Law of Thermodynamics:

if $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$ and $\mathrm{T}_{\mathrm{B}}=\mathrm{T}_{\mathrm{C}}$, then $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{C}}$.

## What is temperature? How to measure it?

Thermometers: Hg in glass, thermocouple, thermistor, liquid crystal layer, constant volume gas thermometer
Scales. Obvious definition of temperature $\theta$ : choose a property X and make $X$ proportional to or linear with $\theta$. This can only be done once for any temp scale $\theta$.
Reference temperature
Melting or freezing? Depends on the pressure.
Thermal Expansion


Usually, $\frac{\Delta \mathrm{L}}{\mathrm{L}} \propto \Delta \mathrm{T}$ for small $\Delta \mathrm{T}$
$\therefore \quad$ Define $\quad \frac{\Delta \mathrm{L}}{\mathrm{L}}=\alpha \Delta \mathrm{T}$ $\alpha$ is coefficient of linear expansion
e.g. steel $\alpha_{\text {st }}=1.1 \times 10^{-5} \mathrm{~K}^{-1}$

Al $\quad \alpha_{\mathrm{Al}}=2.3 \times 10^{-5} \mathrm{~K}^{-1}$
Brass $\alpha_{\mathrm{br}}=1.9 \times 10^{-5} \mathrm{~K}^{-1}$

Example Bridge span is 1 km long.
Mid-winter, $\mathrm{T}=-5^{\circ} \mathrm{C}$ summer, $\mathrm{T}=45^{\circ} \mathrm{C}$
What is $\Delta l$ ?

$$
\Delta \mathrm{L}=\alpha \Delta \mathrm{T} \cdot \mathrm{~L}=\ldots . .=55 \mathrm{~cm}
$$

Example: Bimetallic Strip, 30 cm long, made of 1 mm brass and 1 mm steel. Straight at $0^{\circ} \mathrm{C}$, what angle at $100{ }^{\circ} \mathrm{C}$ ?

$\mathrm{L}+\Delta \mathrm{L}_{\text {st }}=2 \pi \mathrm{R} \cdot \frac{\theta}{360^{\circ}}$
$\mathrm{L}+\Delta \mathrm{L}_{\mathrm{br}}=2 \pi(\mathrm{R}+\mathrm{t}) \frac{\theta}{360^{\circ}} \quad$ subtract $\rightarrow$
$2 \pi \mathrm{t} \frac{\theta}{360^{\circ}}=\Delta \mathrm{L}_{\mathrm{br}}-\Delta \mathrm{L}_{\mathrm{st}}=\mathrm{L} \Delta \mathrm{T}\left(\alpha_{\mathrm{br}}-\alpha_{\mathrm{st}}\right)$
$\theta=$

$$
=14^{\circ}
$$

e.g. oven switch:


## Volume Increase

define $\quad \frac{\Delta V}{V}=\beta \Delta T$

$$
\beta=\text { coefficient of volume expansion }
$$



$$
\begin{aligned}
& =\mathrm{L}^{3}\left(1+\frac{3 \Delta \mathrm{~L}}{\mathrm{~L}}+\ldots \ldots \ldots-1\right) \\
& \approx \mathrm{V} 3 \alpha \Delta \mathrm{~T} \\
\therefore \beta & \approx 3 \alpha
\end{aligned}
$$

Note: $\quad$ Water is unusual: $0^{\circ}-4^{\circ} \mathrm{C}, \beta<0$

Example What is change in $\rho$ for steel between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ ?
$\rho=\frac{M}{V} \quad \therefore \mathrm{~d} \rho=-\frac{\mathrm{M}}{\mathrm{V}^{2}} \mathrm{dV}$
$\therefore \Delta \rho \approx-\frac{\mathrm{M}}{\mathrm{V}^{2}} \Delta \mathrm{~V}=-\rho \frac{\Delta \mathrm{V}}{\mathrm{V}}$
$\therefore \frac{\Delta \rho}{\rho}=-\frac{\Delta \mathrm{V}}{\mathrm{V}}=-\beta \Delta \mathrm{T}=\ldots . .=-0.33 \%$

Example: thermometer, Vol $_{\text {cylinder }} \ll \operatorname{Vol}_{\text {sphere }}$

What is its calibration slope $\frac{\partial \mathrm{x}}{\partial \mathrm{T}}$ ?


$$
\begin{aligned}
\frac{\Delta \mathrm{V}}{\mathrm{~V}} & \equiv \beta \Delta \mathrm{~T} \\
\mathrm{a} \delta \mathrm{x} & \approx \Delta \mathrm{~V}_{\mathrm{fl}}-\Delta \mathrm{V}_{\text {sphere }} \\
& =\beta_{\mathrm{f} 1} \mathrm{~V} \Delta \mathrm{~T}-\beta_{\mathrm{g} 1} \mathrm{~V} \Delta \mathrm{~T} \\
\frac{\partial \mathrm{x}}{\partial \mathrm{~T}} & =\frac{\mathrm{V}}{\mathrm{a}}\left(\beta_{\mathrm{f} 1}-\beta_{\mathrm{gl}}\right)
\end{aligned}
$$

Other temperature coefficients:
Resisitivity $\rho$ :
$\rho=\rho_{\left(\mathrm{T}=\mathrm{T}_{\mathrm{O}}\right)}\left(1+\alpha_{1}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{O}}\right)+\alpha_{2}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{O}}\right)^{2}+\ldots ..\right)$
Warning: $\alpha$ is > 0 for metals, but < 0 for semiconductors
$\sigma \equiv \frac{1}{\rho}=\ldots . . \cong \sigma_{\left(\mathrm{T}=\mathrm{T}_{\mathrm{O}}\right)}\left(1-\alpha_{1}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{o}}\right)\right)$

Thermal runaway
possible


Thermally stable


## Ideal gas temperature scale

Uses reference temp:
Triple point - co-existance of ice, water, steam

$$
\text { call it } \theta_{\mathrm{tr}}
$$

defines $\mathbf{P} \propto \theta$ for constant volume of gas ( P is pressure $\equiv$ Force per unit area)
But gases are not (quite) ideal
e.g. consider boiling temp $\theta_{\mathrm{s}}$ at some P :
$\frac{\theta_{\mathrm{s}}}{\theta_{\text {tr }}}$ is different for different gases and at different densities.
At very low density or pressure,
all gases $\rightarrow$ ideal, $\therefore \frac{\theta_{\mathrm{s}}}{\theta_{\mathrm{tr}}} \rightarrow$ same limit


$$
\mathrm{T}=\mathrm{T} \mathrm{Tr} \lim _{\rho_{\mathrm{tr} \rightarrow 0}}\left(\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{tr}}}\right)_{\mathrm{V}}
$$

where $\mathrm{T}_{\mathrm{tr}}=273.16 \mathrm{~K}$
Why 273.16? This defines the Kelvin so that

$$
\Delta \mathrm{T}=1 \mathrm{~K} \quad \Leftrightarrow \quad \Delta \mathrm{~T}=1{ }^{\circ} \mathrm{C}
$$

(Working definition is more complicated)
Celsius Scale: $\mathrm{T}_{\mathrm{C}}=\mathrm{T}-273.15^{\circ}$

$$
\left.\begin{array}{c}
\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C} \text { water freezes } \\
\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \text { water boils }
\end{array}\right\} \quad \text { at } \mathrm{P}_{\mathrm{A}}
$$

## Farenheit Scale

Definition: that which is transferred between a system and its surroundings as result of $\Delta \mathrm{T}$ only.
Joule showed:
mechanical energy $\rightarrow$ heat (by friction etc.).
(Carnot showed
(heat at high T $\rightarrow$ heat at low T + work)
$\therefore$ measure heat as energy; i.e. S.I.unit. Joule (J)

Heat Capacity: (for a body) $\mathrm{C}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{T}}$ extensive quantity
Specific Heat: (of a substance) $\mathrm{c}=\frac{\Delta \mathrm{Q}}{\mathrm{M} \Delta \mathrm{T}} \quad$ intensive quantity
e.g. $\mathrm{c}_{\mathrm{H}_{2}}=4.2 \mathrm{~kJ} . \mathrm{kg}^{-1} \mathrm{~K}^{-1}, \mathrm{c}_{\mathrm{A} 1}=900 \mathrm{~J} . \mathrm{kg}^{-1} \mathrm{~K}^{-1}$

Latent Heat: $\quad \begin{aligned} & \text { heat required for change } \\ & \text { of phase (at constant T). }\end{aligned}$
Example. A 240 V kettle has a working resistance of $50 \Omega$. Put in 500 ml of water at $20^{\circ} \mathrm{C}$ and turn on. How long before it boils dry?
(Specific heat of $\mathrm{c}_{\mathrm{w}}=$ water $=4.2 \mathrm{~J} . \mathrm{kg} . \mathrm{K}^{-1}, \quad$ Latent heat of
vaporisation $\mathrm{L}_{\mathrm{vap}}=2.3 \mathrm{MJ} . \mathrm{kg}^{-1}$.)
Energy in = power.t $=\frac{\mathrm{V}^{2}}{\mathrm{R}} \mathrm{t}=(1.15 \mathrm{~kW}) . \mathrm{t}$
$=\mathrm{Q}$ to raise T of water +Q to evaporate water
$=\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)+\mathrm{m}_{\mathrm{w}} \mathrm{l}_{\text {vap }}$
$=(0.5 \mathrm{~kg})\left(4.210^{3} \mathrm{~J} . \mathrm{kg}^{-1} \mathrm{~K}^{-1}\right)(100-20)^{\circ} \mathrm{C}$
$+(0.5 \mathrm{~kg})\left(2.310^{6} \mathrm{~J}^{\mathrm{Jg}}{ }^{-1}\right)$
$=168 \mathrm{~kJ}+1.15 \mathrm{MJ}=1.32 \mathrm{MJ}$
$\therefore \mathrm{t}=\frac{1.32 \mathrm{MJ}}{1.15 \mathrm{~kW}}=\ldots=1150 \mathrm{~s}=19$ minutes

$$
\text { (it boils after } \frac{168 \mathrm{~kJ}}{1.15 \mathrm{~kW}}=2.5 \mathrm{mins} \text { ) }
$$

Example A mass $\mathrm{m}_{\mathrm{w}}$ of water at temperature $\mathrm{T}_{1}$ is added to a mass $m_{i}$ of ice at temperature $T_{2}$. (No heat is lost to the environment.) What is the final temperature at thermal equilibrium?
$\exists 4$ possible outcomes:
i) $\mathrm{T}>0^{\circ} \mathrm{C}$ (all ice melts)
ii) $\mathrm{T}=0^{\circ} \mathrm{C}$ \& some ice melts
iii) $\mathrm{T}=0^{\circ} \mathrm{C}$ \& some water freezes
iv) $\mathrm{T}<0^{\circ} \mathrm{C}$ (all water freezes)

To warm ice to $0^{\circ}$ requires $\quad \mathrm{Q}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\left(0^{\circ}-\mathrm{T}_{\mathrm{i}}\right)$
To cool water to $0^{\circ}$ loses $\quad \mathrm{Q}_{\mathrm{w}}=\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}}\left(\mathrm{T}_{\mathrm{w}}-0^{\circ}\right)$
To melt all ice requires $\quad \mathrm{Q}_{\mathrm{m}}=\mathrm{m}_{\mathrm{i}} \mathrm{L}$
To freeze all water loses $\quad \mathrm{Q}_{\mathrm{f}}=\mathrm{m}_{\mathrm{w}} \mathrm{L}$
If $\mathrm{Q}_{\mathrm{w}}>\mathrm{Q}_{\mathrm{i}}+\mathrm{Q}_{\mathrm{m}}$, then all ice melts and final $\mathrm{T}>0$
Q lost by water $=\mathrm{Q}$ gained by ice

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{W}} \mathrm{c}_{\mathrm{w}}\left(\mathrm{~T}_{\mathrm{W}}-\mathrm{T}\right)=\mathrm{m}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\left(0^{\circ}-\mathrm{T}_{\mathrm{i}}\right)+\mathrm{m}_{\mathrm{i}} \mathrm{~L}+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}-0^{\circ}\right) \\
& \text { heatice } \quad \text { melt it } \text { warm melted ice }
\end{aligned}
$$

$\mathrm{T}\left(\mathrm{m}_{\mathrm{i}}+\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}}\right)=\mathrm{m}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}+\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}} \mathrm{T}_{\mathrm{w}}-\mathrm{m}_{\mathrm{i}} \mathrm{L}$
$\mathrm{T}=$ $\qquad$
If $\mathrm{Q}_{\mathrm{i}}+\mathrm{Q}_{\mathrm{m}}>\mathrm{Q}_{\mathrm{W}}>\mathrm{Q}_{\mathrm{i}}$, then some ice melts but $\mathrm{T}=0^{\circ}$
Q lost by water $=\mathrm{Q}$ gained by ice
$\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}}\left(\mathrm{T}_{\mathrm{w}}-0^{\circ}\right)=\mathrm{m}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\left(0^{\circ}-\mathrm{T}_{\mathrm{i}}\right)+\mathrm{m}_{\mathrm{m}} \mathrm{c}_{\mathrm{w}} \mathrm{L}$
heat all ice melt some ice $m_{m}<m_{i}$
$\mathrm{m}_{\mathrm{m}}=. . . .$.
etc for $\mathrm{Q}_{\mathrm{i}}>\mathrm{Q}_{\mathrm{W}}+\mathrm{Q}_{\mathrm{f}}$ and $\quad \mathrm{Q}_{\mathrm{W}}+\mathrm{Q}_{\mathrm{f}}>\mathrm{Q}_{\mathrm{i}}>\mathrm{Q}_{\mathrm{w}}$ all water freezes some water freezes

Work: energy transmitted from one system to another without $\Delta T$ or transfer of Q .
e.g. work done by force F

$$
\mathrm{dW}=\mathbf{F . d s}
$$

e.g. work done against pressure P

$$
\left(\mathrm{P} \equiv \frac{\text { force }}{\text { area }}\right)
$$



$$
\mathrm{dW}=\mathbf{F} . \mathrm{ds}=\mathrm{PA} d s=\mathrm{PdV}
$$

Example 1 kg water, initially at $20^{\circ} \mathrm{C}$, is boiled away at $\mathrm{P}_{\mathrm{A}}$. How much of the input energy goes as work? water volume $=10^{-3} \mathrm{~m}^{3}$

Steam: $\quad V_{f} \gg V_{i}$
$\mathrm{W} \approx \mathrm{PV}_{\mathrm{f}}=\mathrm{nRT}=\frac{\text { mass }}{\text { mol. mass }} \mathrm{RT}=\ldots \quad=172 \mathrm{~kJ}$
cf. Heat to raise to $100^{\circ} \mathrm{C}$
$\mathrm{Q}_{1}=\mathrm{cm} \Delta \mathrm{T}=\ldots .=336 \mathrm{~kJ}$
Heat to transition $\mathrm{Q}_{2}=\mathrm{mL}=\ldots=2.26 \mathrm{MJ}$

## Internal Energy

Heat dQ added to a system increases its internal energy $U$.
Work dW done by the system lowers its internal energy.
1st Law of Thermodynamics $d U=d Q-d W$
where $U$ is a state function

## Kinetic Theory of Gases

## Ideal gas equation of state

( $\cong$ limit for all gases at low $\rho$ ):

$$
\begin{array}{rlrl}
\mathrm{PV}= & \mathrm{nRT} \quad= & \mathrm{NkT} \\
\mathrm{n}=\text { no. of moles } \\
\mathrm{R}=\text { gas constant } & \mathrm{N}=\text { no. of molecules } \\
& =8.31 \mathrm{JK}^{-1} & & =\frac{\mathrm{R}}{}=\text { Boltzmann's Constant } \\
\mathrm{N}_{\mathrm{A}} & =1.3810^{-23} \mathrm{JK}^{-1}
\end{array}
$$

Example. Spherical balloon. Skin (total) has mass $\sigma=10 \mathrm{~g} . \mathrm{m}^{-2}$.
How big does it need to be to lift 200 kg load if (i) it contains hot air at 100 C ? (ii) Helium at STP?

Archimedes: $\mathrm{W}_{\text {displaced }}=\mathrm{W}_{\text {balloon }}$
$\frac{4}{3} \pi r^{3} \rho_{\text {air }} g=\frac{4}{3} \pi r^{3} \rho_{\mathrm{gas}} g+4 \pi r^{2} \sigma g+\mathrm{mg}$
$\mathrm{r}^{3}\left(\rho_{\text {air }}-\rho_{\mathrm{gas}}\right)-3 \mathrm{Hr}^{2}=\frac{3}{4 \pi} \mathrm{~m} \quad$ (neglect quadratic term or solve cubic)
$r \cong \sqrt[3]{\frac{3 m}{4 \pi \rho_{\mathrm{air}}\left(1-\rho_{\mathrm{gas}} / \rho_{\mathrm{air}}\right)}}$
He: $\rho_{\mathrm{gas}} / \rho_{\text {air }}=4 / 30 \quad \rightarrow \mathrm{r} \cong 3.6 \mathrm{~m}$
Hot air: $\rho=\frac{\mathrm{Nm}}{\mathrm{V}}=\frac{\mathrm{Pm}}{\mathrm{kT}}$
$\therefore \quad \frac{\rho_{\mathrm{hot}}}{\rho_{\mathrm{cold}}}=\frac{\mathrm{T}_{\text {cold }}}{\mathrm{T}_{\text {hot }}}=\frac{273 \mathrm{~K}}{373 \mathrm{~K}} \quad \rightarrow \mathrm{r} \cong 5.3 \mathrm{~m}$ check approx ${ }^{n}$

## Kinetic theory: Ideal Gas Postulates

i) gas made of (identical) molecules
ii) these obey Newton's laws, with random motion
iii) no. of molecules is large (~Avagadro's number)
iv) total volume molecules is negligible fraction
(~ $10^{-3}$ )
v) no interaction except during collision
(average $U_{\text {interaction }}<10^{-4}$ K.E.)
vi) collisions elastic, negligible duration.
( $\sim 10^{-3}$ of time)

parallel plates, area A . Volume $\mathrm{V}=\mathrm{AL}$.
N molecules (mass m ) of an ideal gas.
Each collision $\rightarrow$
$\Delta$ momentum $=2 \mathrm{mv}_{\mathrm{X}}$
time between collisions $\quad \mathrm{t}=2 \mathrm{~L} / \mathrm{v}_{\mathrm{x}}$.
$\overline{\mathrm{F}}=\frac{\Delta \text { momentum }}{\Delta \text { time }}=\frac{2 \mathrm{mv}_{\mathrm{X}}}{2 \mathrm{~L} / \mathrm{v}_{\mathrm{X}}}=\frac{\mathrm{mv}_{\mathrm{X}}{ }^{2}}{\mathrm{~L}} \quad \therefore \quad \mathrm{~F}$ on all N molecules is
$\mathrm{F}_{\text {all molecules }}=\frac{\mathrm{Nm} \overline{\mathrm{v}_{\mathrm{x}}{ }^{2}}}{\mathrm{~L}}=\mathrm{PA}$
$\mathrm{v}^{2}=\mathrm{v}_{\mathrm{X}}{ }^{2}+\mathrm{vy}^{2}+\mathrm{v}_{\mathrm{z}}{ }^{2} ; \quad$ random motion $\Rightarrow \overline{\mathrm{vx}^{2}}=\overline{\mathrm{vy}^{2}}=\overline{\mathrm{v}_{\mathrm{z}}{ }^{2}} \quad \Rightarrow \overline{\mathrm{v}_{\mathrm{x}}{ }^{2}}=\frac{1}{3} \overline{\mathrm{v}^{2}}$, so:

$$
\mathrm{PAL}=\mathrm{PV}=\mathrm{Nm} \overline{\mathrm{v}_{\mathrm{x}}^{2}}=\frac{\mathrm{N}}{3} \overline{\mathrm{~m} \mathrm{v}^{2}} \quad \mathrm{P}=\frac{\mathrm{Nm}}{3 \mathrm{~V}} \overline{\mathrm{v}^{2}}=\frac{1}{3} \rho \overline{\mathrm{v}^{2}}
$$

## Molecular speeds:

$\mathbf{v}_{\mathbf{r m s}}$ root mean square velocity

$$
\mathrm{v}_{\text {r.m.s. }} \equiv \sqrt{\mathrm{v}^{2}}
$$

c) What is $\mathrm{v}_{\mathrm{rms}}$ in atmosphere? (approximate it as an ideal gas at $\mathrm{P}_{\mathrm{A}}$, with $\rho_{\mathrm{A}}=1.3 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ )

$$
\rightarrow \mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{P}}{\rho}}=\sqrt{\frac{3 \times 10^{5}}{1.3}}=480 \mathrm{~ms}^{-1}
$$

## Meaning of temperature:

We had

$$
\mathrm{PV}=\frac{\mathrm{N}}{3} \mathrm{~m} \overline{\mathrm{v}^{2}}
$$

$\frac{1}{2} \mathrm{~m} \overline{\mathrm{v}^{2}}=\bar{\varepsilon} \equiv$ average K.E. per molecule
But T defined by (1 and 5): $\quad \mathrm{PV}=\mathrm{NkT}$

$$
\begin{equation*}
\therefore \quad \bar{\varepsilon}=\frac{1}{2} \mathrm{~m} \overline{\mathrm{v}^{2}}=\frac{3}{2} \frac{\mathrm{PV}}{\mathrm{~N}}=\frac{3}{2} \mathrm{kT} \tag{7}
\end{equation*}
$$

For ideal gas all energy $\mathbf{E}$ is kinetic so:

$$
\begin{equation*}
\mathrm{E}=\mathrm{N} \bar{\varepsilon}=\frac{3}{2} \mathrm{NkT} \tag{8}
\end{equation*}
$$

$T \propto$ average K.E. of molecules in an ideal gas.
3 degrees of motional freedom ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ )
i.e. $\quad \frac{1}{2} \mathrm{kT}$ per degree of freedom (At ordinary temperatures, $\mathrm{kT} \cong 410^{-21} \mathrm{~J}$ )

## molecular speeds again:

$$
\begin{gathered}
\frac{1}{2} \mathrm{~m} \overline{\mathrm{v}^{2}}=\frac{3}{2} \mathrm{kT} \\
\mathrm{v}_{\text {r.m.s. }} \equiv \sqrt{\mathrm{v}^{2}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}}}
\end{gathered}
$$

Example: What is $\mathrm{v}_{\mathrm{rms}}$ of $\mathrm{O}_{2}, \mathrm{~N}_{2}$. and $\mathrm{H}_{2}$ at $\mathrm{T}=293 \mathrm{~K}$ ?

$$
\begin{equation*}
\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}}}=\sqrt{\frac{3 \mathrm{kT} \mathrm{~N}_{\mathrm{A}}}{\mathrm{molwt}}} \tag{7}
\end{equation*}
$$

for $\mathrm{O}_{2}:=\sqrt{\frac{3 \times 1.3810^{-23} \times 293 \times 6.0210^{23}}{0.032}}$

$$
=478 \mathrm{~ms}^{-1}
$$

for $\mathrm{N}_{2} \rightarrow 511 \mathrm{~ms}^{-1} \quad$ for $\mathrm{H}_{2} 1.91 \mathrm{kms}^{-1} \quad$ c.f. $v_{\text {escape }}=11 \mathrm{kms}^{-1}$
note that for air $\quad v_{\text {rms }}>\mathrm{v}_{\text {sound }}$
but recall from waves:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{s}}=\sqrt{\frac{\mathrm{K}_{\mathrm{ad}}}{\rho}}=\sqrt{\frac{\gamma \mathrm{P}}{\rho}}=\sqrt{\frac{\gamma \mathrm{kT}}{\mathrm{~m}}} \\
& \text { so } \quad \frac{\mathrm{v}_{\mathrm{rms}}}{\mathrm{v}_{\mathrm{s}}}=\sqrt{\frac{3}{\gamma}} \sim 1.5 \quad \gamma \text { discussed later. }
\end{aligned}
$$

Example What is the $v_{\text {rms }}$ due to thermal motion (Brownian motion) of: pollen grain ( $\mathrm{m} \sim 10^{-15} \mathrm{~kg}$ ) and apple ( $\mathrm{m} \sim 0.2 \mathrm{~kg}$ )
$\mathrm{v}_{\text {rms. }}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{m}}} \quad$ pollen $\Rightarrow 2 \mathrm{~mm} \mathrm{~s}^{-1} \quad$ (Brownian motion 1st analysed by Einstein, 1904)
Example. Spherical balloon. Skin (total) has mass $\sigma=10 \mathrm{~g} \cdot \mathrm{~m}^{-2}$. How big does it need to be to lift 200 kg load if (i) it contains hot air at 100 C ? (ii) Helium at STP?

Archimedes: $\mathrm{W}_{\text {displaced }}=\mathrm{W}_{\text {balloon }}$
$\frac{4}{3} \pi r^{3} \rho_{\text {air }} g=\frac{4}{3} \pi r^{3} \rho_{\mathrm{gas}} g+4 \pi r^{2} \sigma g+m g$
$\mathrm{r}^{3}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{gas}}\right)-3 \sigma \mathrm{r}^{2}=\frac{3}{4 \pi} \mathrm{~m} \quad$ (or solve cubic)
$\mathrm{r} \cong \frac{3 \mathrm{~m}}{4 \pi \rho_{\mathrm{air}}\left(1-\rho_{\mathrm{gas}} / \rho_{\mathrm{air}}\right)}$
He: $\rho_{\text {gas }} / \rho_{\text {air }}=4 / 30 \quad \rightarrow r \cong 3.6 \mathrm{~m}$
Hot air: $\rho=\frac{\mathrm{Nm}}{\mathrm{V}}=\frac{\mathrm{Pm}}{\mathrm{kT}}$

$$
\therefore \quad \frac{\rho_{\mathrm{hot}}}{\rho_{\mathrm{cold}}}=\frac{\mathrm{T}_{\mathrm{cold}}}{\mathrm{~T}_{\mathrm{hot}}}=\frac{273 \mathrm{~K}}{373 \mathrm{~K}} \quad \rightarrow \mathrm{r} \cong 5.3 \mathrm{~m}
$$

Special Cases

1. Isobaric Process - P constant

$$
\begin{aligned}
& \mathrm{W}=\int \mathrm{PdV}=\mathrm{P}\left(\mathrm{~V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right) \\
& \therefore \Delta \mathrm{U}=\Delta \mathrm{Q}-\mathrm{P} \Delta \mathrm{~V} \\
& \Delta \mathrm{Q}=\mathrm{ML}(=\text { mass . latent heat }) \\
& \Delta \mathrm{U}=\mathrm{ML}-\mathrm{P} \Delta \mathrm{~V}
\end{aligned}
$$

Also, things done at atmospheric pressure
2. Isochoric - volume constant
$\therefore \quad \mathrm{W}=0, \therefore \Delta \mathrm{Q}=\Delta \mathrm{U}$
3. Adiabatic Process: no heat flow, $\Delta \mathrm{Q}=0$
either fast or insulated
e.g. compression stroke in engine
sound wave compression
most muscle contractions

Free expansion:

open tap


No work done, Experimentally, find $\Delta \mathrm{Q}=0$
$\therefore \Delta \mathrm{U}=0$
$\therefore \mathrm{U}$ of ideal gas doesn't depend on $\rho$,
i.e. $U=U(T)$

## Special cases of the First Law

$$
\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}
$$

| Process |  |  | Q | W | $\Delta \mathrm{U}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Adiabatic | $\mathrm{Q}=0$ | $\therefore \Delta \mathrm{U}=-\mathrm{W}$ | 0 | $\int \mathrm{PdV}$ | -W |
| Constant volume | $\mathrm{W}=\int \mathrm{PdV}=0$ | $\therefore \Delta \mathrm{U}=\mathrm{Q}$ | Q | 0 | Q |
| Closed cycle | $\Delta \mathrm{U}=0$ | $\therefore \mathrm{Q}=\mathrm{W}$ | Q | Q | 0 |
| Free expansion | $\mathrm{Q}=\mathrm{W}=0$ | $\therefore \Delta \mathrm{U}=0$ | 0 | 0 | 0 |

For a gas, specific heat at constant pressure $\left(c_{P}\right)$ is greater than specific heat at constant volume $\left(c_{v}\right)$. Why?
The ratio $\mathrm{cp}_{\mathrm{P}} / \mathrm{c}_{\mathrm{v}}$ is called $\gamma$.
$\mathrm{PV}^{\gamma}=$ constant for adiabatic process
Note: pressure varies more strongly with change in V for adiabatic than for isothermal, where $P V^{l}=$ constant.

## Example

Compressed gas $\left(\mathrm{P}_{1}, \mathrm{~T}_{1}\right)$ escapes from a cylinder into the atmosphere $\left(\mathrm{P}_{\mathrm{A}}, \mathrm{T}\right)$.
Assume rapid, adiabatic expansion, no initial mixing. How cold does it get?
Adiabatic:

$$
\mathrm{PV}^{\gamma}=\text { constant }
$$

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{1 / \gamma} \\
\therefore & \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{P}_{1} \mathrm{~V}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{1 / \gamma}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{1-1 / \gamma}
\end{array}
$$

Example. Same problem but for car tyre:
" p " (gauge pressure) $=180 \mathrm{kPa}$. Take $\gamma=1.40, \mathrm{~T}=300 \mathrm{~K}$. Release some air into atmosphere $\left(\mathrm{P}_{2}=\mathrm{P}_{\mathrm{A}}=101 \mathrm{kPa}\right)$. What is temperature of emerging air?
$\mathrm{P}_{1}=" \mathrm{p} "+\mathrm{P}_{\mathrm{A}}=281 \mathrm{kPa}$
$\therefore \mathrm{T}_{\mathrm{f}}=. . . . . . . . . .=224 \mathrm{~K}=-49^{\circ} \mathrm{C}$
Example (a peculiar heat cycle)

c) Isothermal compression


Isotherms: $\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}} \quad \therefore \quad \mathrm{W}=\int \mathrm{PdV} \quad=\ldots=\mathrm{nRT} \ln \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}$

|  | $\Delta \mathrm{U}$ | $\Delta \mathrm{W}$ | $\Delta \mathrm{Q}$ |
| :---: | :---: | :---: | :---: |
| a | 0 | $\mathrm{nRT}_{\mathrm{H}} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$ | $\mathrm{nRT}_{\mathrm{H}} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$ |
| b | $-\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right)$ | 0 | $-\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right)$ |
| c | 0 | $-\mathrm{nRT}_{\mathrm{C}} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$ | $-\mathrm{nRT}_{\mathrm{C}} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$ |
| d | $\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right)$ | 0 | $\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right)$ |
| $\Sigma$ | 0 | $\mathrm{nR}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right) \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$ | $\mathrm{nR}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right) \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$ |

efficiency $\equiv \quad \frac{\text { work out }}{\text { heat in }}=\left(\frac{\mathrm{R}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right) \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)}{\mathrm{RT}_{\mathrm{H}} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)+\mathrm{C}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{c}}\right)}\right)$
$\left.\begin{array}{c}\text { all terms }>0 \\ \mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\mathrm{H}}\end{array}\right\} \therefore$ efficiency $<100 \%$

## P-V diagrams and thermal cycles



Simple cycles typical of those found in tut and exam questions


Idealised cycles sometimes approximated

conceptually
easiest

most efficient


## Heat conduction



Reservoirs at $\mathrm{T}_{\mathrm{H}}$ and at $\mathrm{T}_{\mathrm{C}}$.
$H$ is rate of heat transfer through a material in steady state.

$$
\mathrm{H} \equiv \mathrm{kA} \frac{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{l}
$$

defines the thermal conductivity $\mathbf{k}$

| H in $\mathrm{W}, \quad$ so | k in $\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{~K}^{-1}$. |  |
| :--- | :---: | :--- |
| Copper | 401 | $\mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$ |
| Stainless Steel | 14 |  |
| Glass | 1 |  |
| Water | 0.5 |  |
| Pine (wood) | 0.11 |  |
| Dry air | 0.026 |  |

Thermal resistance or R-value sometimes used for building materials

$$
\mathrm{R} \equiv \frac{l}{\mathrm{k}} \quad \text { so } \quad \mathrm{H}=\mathrm{A} \frac{\Delta \mathrm{~T}}{\mathrm{R}}
$$

(High conductivity, low R value and vice versa.)

Example. Wht is the R value of 1 cm pine?
Whe his Auststudy is cut off, a student lives in a pine packing crate, area $8 \mathrm{~m}^{2}$, thickness 1.0 cm . If the shivering student produces 300 W , which is lost by conduction through the crate, how much warmer is it inside the crate?
T


$$
\begin{aligned}
\mathrm{R} & \equiv \frac{l}{\mathrm{k}}=0.09 \mathrm{~K} \cdot \mathrm{~m}^{2} \mathrm{~W}-1 \\
\mathrm{H} & \equiv \mathrm{kA} \frac{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{l} \quad \text { or }=A \frac{\Delta T}{R} \\
\mathrm{~T}_{\mathrm{H}} & -\mathrm{T}_{\mathrm{C}}=\frac{l \mathrm{H}}{\mathrm{kA}} \\
& =\frac{0.010 \mathrm{~m} * 300 \mathrm{~W}}{0.11 \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1} * 8 \mathrm{~m}^{2}}=3 \mathrm{~K} . \quad \text { Other benefits: wind, rain, radiation }
\end{aligned}
$$

Example. To reduce thermal noise, a low temperature circuit is immersed in liquid nitrogen ( $77 \mathrm{~K}, \mathrm{~L}=199 \mathrm{kJ.kg}^{-1}$ ). It is connected to the outside circuitry by 3 well-insulated copper wires, length $l=100 \mathrm{~mm}$, diameter 0.3 mm . What is the rate of $\mathrm{N}_{2}$ evaporation due to the heat conducted down the wires?


Power to evaporate $\mathrm{N}_{2}=$ heat transfer
$\mathrm{L} \cdot \frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{H} \equiv \mathrm{kA} \frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{l}$
$\frac{\mathrm{dm}}{\mathrm{dt}}=\frac{\mathrm{kA}}{\mathrm{L}} \frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{l}=\ldots . . \quad=90 \mu \mathrm{gs}^{-1}=340 \mathrm{mg} \cdot \mathrm{hr}^{-1}$

Example. A flask of coffee, initially at $90^{\circ} \mathrm{C}$, cools to $81^{\circ} \mathrm{C}$ in one hour in
$20^{\circ} \mathrm{C}$ atmosphere. How long will it take to cool to $60^{\circ} \mathrm{C}$ ?
$\mathrm{H}=\mathrm{kA} \frac{\mathrm{T}-\mathrm{T}_{\mathrm{C}}}{\mathrm{L}}$
$\mathrm{H}=-\frac{\mathrm{dQ}}{\mathrm{dt}} \equiv-\frac{\mathrm{mcdT}}{\mathrm{dt}}$
$\frac{\mathrm{dT}}{\mathrm{dt}}=-\frac{\mathrm{kA}}{\mathrm{mc}} \frac{\mathrm{T}-\mathrm{T}_{\mathrm{C}}}{\mathrm{L}}$


Characteristic time: $\tau=\frac{\mathrm{mcL}}{\mathrm{kA}}$ Solve $\mathrm{DE} \rightarrow$
$\mathrm{T}=\mathrm{T}_{\mathrm{C}}+\left(\mathrm{T}_{\mathrm{O}}-\mathrm{T}_{\mathrm{C}}\right) \mathrm{e}^{-\mathrm{t} / \tau}$
$81^{\circ} \mathrm{C}=20^{\circ} \mathrm{C}+\left(70^{\circ} \mathrm{C}\right) \mathrm{e}^{-(1 \mathrm{~h}) / \tau}$
$\therefore \tau=7.3 \mathrm{~h} \quad \ldots \rightarrow 4.1 \mathrm{~h}$ to cool to $60^{\circ} \mathrm{C}$

A note about steady state (T constant)
in one dimension, $\quad \mathrm{H} \equiv \mathrm{kA} \frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{l}$
becomes heat flux $\equiv \frac{\mathrm{H}}{\mathrm{A}}=\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dx}}$
In steady state, $\begin{gathered}\text { rate of heat } \\ \text { arriving }\end{gathered}=\begin{gathered}\text { rate of heat } \\ \text { departing }\end{gathered}$


Getting to steady state:


At boundary of vacuum:


Heat conduction to the surface

## =

heat radiation from the surface

## Example



Two volumes of same gas. Open tap. What pressure?
Gas redistributes until P equal.
5 unknowns: $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{1}{ }^{\prime}, \mathrm{N}_{2}{ }^{\prime}, \mathrm{P}$
Before $\quad N_{1}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}} \quad \mathrm{~N}_{2}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{RT}_{2}}$
After $\mathrm{N}_{1}{ }^{\prime}=\frac{\mathrm{PV}_{1}}{\mathrm{RT}_{1}} \quad \mathrm{~N}_{2}{ }^{\prime}=\frac{\mathrm{PV}_{2}}{\mathrm{RT}_{2}}$
Conservation: $\quad \mathrm{N}_{1}+\mathrm{N}_{2}=\mathrm{N}_{1}{ }^{\prime}+\mathrm{N}_{2}{ }^{\prime} \quad$ Solve......

