Gravity

Notes for PHYS 1121-1131. Joe Wolfe, UNSW

Gravity: where does it fit in?

<table>
<thead>
<tr>
<th>Gravity [general relativity]</th>
<th>Electric force*</th>
<th>Weak nuclear force</th>
<th>Strong nuclear force</th>
<th>Colour force</th>
</tr>
</thead>
<tbody>
<tr>
<td>gravitons</td>
<td>photons</td>
<td>intermediate vector bosons</td>
<td>pions</td>
<td>gluons</td>
</tr>
</tbody>
</table>

- electro-weak

Grand Unified Theories

Some tries for classical gravity

Theories Of Everything

* Electromagnetism "unified" by Maxwell, and also by Einstein: Magnetism can be considered as the relativistic correction to electric interactions which applies when charges move.

- Only gravity and electric force have macroscopic ("infinite") range.

 \[m_{graviton} = m_{photon} = 0 \]

- Gravity weakest, but dominates on large scales because it is always attractive

Greeks to Galileo:

i) things fall to the ground ("natural" places)

ii) planets etc move (variety of reasons)

but no connection (in fact, natural vs supernatural)

Newton's calculation:

accel\(n\) of moon

\[
\frac{r_m}{r_{moon}}
\]

\[
\begin{align*}
= r_m \omega_m^2 \\
= (3.8 \times 10^8 \text{ m}) \left(\frac{2\pi}{27.3 24 3600} \right)^2 \\
= 2.7 \times 10^{-3} \text{ m.s}^{-2}
\end{align*}
\]

accel\(n\) of "apple" = 9.8 m.s\(^{-2}\)

\[
\frac{a_{apple}}{a_{moon}} = 3600; \quad \frac{r_m}{R_e} = \frac{385000 \text{ km}}{6370 \text{ km}} = 60; \\
\left(\frac{r_m}{R_e} \right)^2 = 3600
\]

Newton's brilliant idea: What if the apple and the moon accelerate according to the same law? → What if every body in the universe attracts every other, inverse square law?
Newton's law of gravity:

\[F = -G \frac{m_1 m_2}{r^2} \]

Negative sign means \(F // -r \)

Why is it inverse square? Wait for Gauss' law in electricity.

\[F_{12} = -F_{21} \]

Newton already knew Kepler's empirical law:

For planets, \(r^3 \propto T^2 \) orbit radius and period

Now if \(F \propto a c \propto \frac{1}{r^2} \)

then constant = \(a c r^2 = r\omega^2 r^2 = r^3 \omega^2 \)

<table>
<thead>
<tr>
<th>Planet</th>
<th>(r) from sun</th>
<th>(T)</th>
<th>(\omega)</th>
<th>(r\omega^2)</th>
<th>(r^3 \omega^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>58</td>
<td>7.62</td>
<td>8.25 (10^{-7})</td>
<td>3.95 (10^{-5})</td>
<td>1.31 (10^{20} \text{m}^3\text{s}^{-2})</td>
</tr>
<tr>
<td>Venus</td>
<td>108</td>
<td>19.4</td>
<td>3.23 (10^{-7})</td>
<td>1.13 (10^{-5})</td>
<td>1.32 (10^{20} \text{m}^3\text{s}^{-2})</td>
</tr>
<tr>
<td>Earth</td>
<td>150</td>
<td>31.6</td>
<td>1.99 (10^{-7})</td>
<td>5.94 (10^{-6})</td>
<td>1.33 (10^{20} \text{m}^3\text{s}^{-2})</td>
</tr>
<tr>
<td>etc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How big is G?

Cavendish's experiment (1798)

\[F = -G \frac{m_1 m_2}{r^2} \]

From deflection and spring constant, calculate F, know \(m_1\) and \(m_2\), \(\therefore\) can calculate G. \(G = 6.67 \times 10^{-11} \text{ Nm}^2\text{kg}^{-2} \) (or \(m^3\text{kg}^{-1}\text{s}^{-2}\))

Now also weight of \(m\): \(|W| = mg = G \frac{mM_e}{R_e^2}\)

\(\therefore\) Cavendish first calculated mass of the earth:

\[M_e = \frac{gR_e^2}{G} = \frac{9.8 \text{ m.s}^{-2} \times (6.37 \times 10^6 \text{ m})^2}{6.67 \times 10^{-11} \text{ Nm}^2\text{kg}^{-2}} = 6.0 \times 10^{24} \text{ kg} \]

Some numbers

What is force between two oil tankers at 100 m?

\[F = -G \frac{m_1 m_2}{r^2} \]

What happens when more there are \(\geq 3\) bodies?

Superposition principle.

\[\mathbf{F}_{\text{all objects together}} = \sum \mathbf{F}_{\text{individual}} \]

or \[\mathbf{F}_1 = \sum \mathbf{F}_{1i} \]

force on \(m_1\) due to masses \(m_i\)

continuous body \[\mathbf{F}_1 = \int_{\text{body}} \mathbf{d} \mathbf{F} \]
Shell theorem

A uniform shell of mass M causes the same gravitational force on a body outside is as does a point mass M located at the centre of the shell, and zero force on a body inside it.

\[F_g = \frac{GMm}{R^2} \]

Example. If \(\rho_{\text{earth}} \) were uniform (it isn’t), how long would it take for a mass to fall through a hole through the earth to the other side?

\[M_r = \rho \frac{4}{3} \pi r^3 \]

\[\therefore F_r = -G \frac{m \rho \frac{4}{3} \pi r^3}{r^2} \]

\[F = -Kr \quad \text{where} \quad K = Gm \rho \frac{4}{3} \pi \]

\[\therefore \text{motion is SHM with} \quad \omega = \sqrt{\frac{K}{m}} \quad \text{Simple Harmonic Motion: discussed later} \]

\[T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{G\rho \frac{4}{3} \pi}} = \frac{2\pi}{\sqrt{GM/R^3}} = \ldots = 84 \text{ minutes} \]

\[\therefore \text{falls through (one half cycle) in 42 minutes} \quad (\text{actually faster for real density profile}) \]
Gravity near Earth's surface

\[W = \left| F_g \right| = G \frac{M m}{R_e^2} \]
\[W = mg_o = G \frac{M_e m}{r^2} \]

\(g_o \) is acceleration in an inertial (non-rotating) frame

\[g_o = G \frac{M_e}{r^2} \]

Usually, \(r \approx R_e \), but

\[g_o = G \frac{M_e}{(R_e + h)^2} = g_s \left(\frac{R_e}{R_e + h} \right)^2 \]
\[= g_s \left(\frac{1}{1 + h/R_e} \right)^2 \]

where \(g_s \) is \(g_o \) at surface

Other complications:

i) Earth is not uniform (especially the crust) *useful for prospecting*

ii) Earth is not spherical

iii) Earth rotates (see Foucault pendulum)

(Weight) \(= - \) (the force exerted by scales)

At poles, \(F - N = 0 \)

At latitude \(\theta \), \(F - N = ma \)

where \(a = r \omega^2 = (R_e \cos \theta) \omega^2 \)

\[= = 0.03 \text{ ms}^{-2} \text{ at equator} \]
\[= 0 \text{ at poles} \]

We define \(-g = \frac{N}{m} = \frac{F - ma}{m} \)

So \(g \) is greatest at the poles, least at the equator, and does not (quite) point towards centre.

horizontal \(\perp g \)

Earth is flattened at poles
Puzzle: How far from the earth is the point at which the gravitational attractions towards the earth and that towards the sun are equal and opposite? Compare with distance earth-moon (380,000 km)

\[|F_e| = |F_s| \]
\[\frac{GM_em}{d^2} = \frac{GM_sm}{(r_e - d)^2} \]
\[M_e(r_e - d)^2 = M_sd^2 \]
\[r_e^2 - 2r_e d + d^2 = \frac{M_s}{M_e} d^2 \]
\[\left(\frac{M_s}{M_e} - 1 \right) d^2 + 2r_e d - r_e^2 = 0 \]
\[d = \ldots = ? \]

Gravitational field. A field is ratio of force on a particle to some property of the particle. For gravity, (gravitational) mass is the property:

\[\frac{F_{grav}}{m} = g = g(r) \]

is a vector field

cf electric field \[\frac{F_{elec}}{q} = E(r) \] later in syllabus

Gravitational potential energy. Revision:

Potential energy

For a conservative force \(F \) (i.e. one where work done against it, \(W = W(r) \)) we can define potential energy \(U \) by \(\Delta U = W_{against} \) i.e.

\[\Delta U = - \int F \cdot dr \]

near Earth's surface, \(F_g = mg \equiv \text{constant} \)

\[= - \int (-mgk) \cdot (dx\hat{i} + dy\hat{j} + dz\hat{k}) \]

\[= mg k \cdot k \int_i^f dz = mg (z_f - z_i) \]

choose reference at \(z_i = 0 \), so \(U = mgz \)

Gravitational potential energy of \(m \) and \(M \).

\[\Delta U_g = - \int F_g \cdot ds = \int F_g dr = \int G \frac{Mm}{r^2} dr = -GMm \left[\frac{1}{r_f} - \frac{1}{r_i} \right] \]

Convention: take \(r_i = \infty \) as reference: \(U(r) = -\frac{GMm}{r} \)

\(U = \text{work to move one mass from} \infty \text{to} r \text{ in the field of the other. Always negative.} \)

Usually one mass >> other, we talk of \(U \) of one in the field of the other, but it is \(U \) of both.
Escape "velocity".
Escape "velocity" is minimum speed \(v_e\) required to escape, i.e. to get to a large distance \((r \to \infty)\).

![Diagram](attachment:image.png)

Projectile in space: no non-conservative forces so conservation of mechanical energy

\[
\frac{1}{2}mv_e^2 - \frac{GMm}{R} = 0 + 0
\]

\[
v_{esc} = \sqrt{\frac{2GM}{R}}
\]

For Earth: \(v_{esc} = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2} \times 5.98 \times 10^{24} \text{ kg}}{6.37 \times 10^6 \text{ m}}}\)

\[
= 11.2 \text{ km.s}^{-1} = 40,000 \text{ k.p.h.}
\]

Put launch sites near equator: \(v_{eq} = R_e\omega_e = 0.47 \text{ km.s}^{-1}\)

Question In Jules Verne's "From the Earth to the Moon", the heros' spaceship is fired from a cannon*. If the barrel were 100 m long, what would be the average acceleration in the barrel?

\[
v_f^2 - v_i^2 = 2as
\]

\[
a = \frac{v_e^2 - 0}{2s} = \frac{(1.12 \times 10^4 \text{ ms}^{-2})^2}{2 \times 100 \text{ m}}
\]

\[
= 630,000 \text{ ms}^{-2} = 64,000 \text{ g}
\]

* why? If you burn all the fuel on the ground, you don't have to accelerate and to lift it. Much more efficient.

Planetary motion

"The music of the spheres" - Plato

Leucippus & Democritus C5 B.C.

heliocentric universe

Hipparchus (C2 BC) & Ptolemy (C2 AD) geocentric universe

Tycho Brahe (1546-1601) - very many, very careful, naked eye observations.

Johannes Kepler joined him. He fitted the data to these empirical laws:

Kepler's laws:

1. All planets move in elliptical orbits, with the sun at one focus.

 *Except for Pluto and Oort cloud objects, these ellipses are \(\equiv\) circles.

 \(M_{sun} \gg m_{planet}\), so sun is \(\equiv c.m.\)

2. A line joining the planet to the sun sweeps out equal areas in equal time.

 Slow at apogee (distant), fast at perigee (close)

3. The square of the period \(\propto\) the cube of the semi-major axis

 Slow for distant, fast for close
Newton’s explanations:

Law of areas:

![Diagram of areas](image)

Area = \(\frac{1}{2} r_r \delta \theta \)

i.e. for same \(\delta t \), \(\frac{1}{2} r^2 \delta \theta = \) constant

Conservation of angular momentum \(L \). Sun at c.m.

\[L = \lvert \mathbf{r} \times \mathbf{p} \rvert = \lvert \mathbf{r} \times m v \rvert = m r v_{\text{tangential}} \]

\[= m r \omega = m r^2 \frac{\delta \theta}{\delta t} \]

\[= \frac{m}{\delta t} r^2 \delta \theta = \text{constant.} \]

Conservation of \(L \) \(\Rightarrow \) Kepler 2.

Law of periods: (we consider only circular orbits)

Kepler 3: \(T^2 \propto r^3 \)

Newton 2 \(\rightarrow \)

\[F = m a = m r \omega^2 \]

\[G \frac{Mm}{r^2} = m \left(\frac{2\pi}{T} \right)^2 \]

\[T^2 = \left(\frac{4\pi^2}{GM} \right) r^3 \rightarrow \text{Kepler 3} \]

(works for ellipses with semi-major axis \(a \) instead of \(r \))

Newton 2 & Newton’s gravity \(\Rightarrow \) Kepler 3

Newton 2 & Newton’s gravity also \(\Rightarrow \) Kepler 1

Example What is the period of the smallest earth orbit? (\(r = R_e \))

What is period of the moon? (\(r_{\text{moon}} = 3.82 \times 10^8 \) m)

\[T_1 = \sqrt{\frac{4\pi^2}{GM} r^3} = \sqrt{\frac{4 \pi^2}{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times (6.37 \times 10^6)^3}} \text{ s} \]

\[= 84 \text{ min} \]

Kepler 3: \(T^2 \propto r^3 \)

\[\frac{T_2}{T_1} = \left(\frac{r_2}{r_1} \right)^{3/2} = \left(\frac{3.82 \times 10^8}{6.37 \times 10^6} \right)^{3/2} = 464 \]

\[T_2 = 464 \times T_1 = 27.2 \text{ days} \]

For other planets: most have moons, so the mass of the planet can be calculated from

\[T^2 = \left(\frac{4\pi^2}{GM} \right) r^3 \]
Orbits and energy

No non-conservative forces do work, so mechanical energy is constant:

\[
E = K + U = \frac{1}{2}mv^2 - \frac{GMm}{r}
\]

Let's remove \(v \). Consider circular orbit:

\[
\frac{v^2}{r} = a_c = \frac{F}{m} = \frac{GMm}{r^2m}
\]

\[
\therefore \quad \frac{1}{2}mv^2 = \frac{1}{2} \frac{GMm}{r}
\]

\[
E = K + U = \frac{1}{2} \frac{GMm}{r} - \frac{GMm}{r} = -\frac{GMm}{2r}
\]

i.e. \(E = \frac{1}{2}U \), or \(K = -\frac{1}{2}U \), or \(K = -E \).

Small \(r \Rightarrow U \) very negative, \(K \) large. \(\text{(inner planets fast, outer slow)} \)

Example

A spacecraft in orbit fires rockets while pointing forward. Is its new orbit faster or slower?

\[\mathbf{F} \parallel \mathbf{ds} \therefore \text{Work done on craft} \]

\[W = \int \mathbf{F} \cdot d\mathbf{s} > 0. \]

\[
\therefore E = -\frac{GMm}{2r} \text{ increases, i.e. it becomes less negative. (R is larger). } K = -E, \therefore K \text{ smaller, so it travels more slowly. } \]

\(\text{called "Speeding down"} \)

Quantitatively:

\[
K_i = -E_i, \quad K_f = -E_f = -(E_i + \Delta E)
\]

\[
K_f = K_i - \Delta E
\]

\[
\frac{1}{2}mv_i^2 = \frac{1}{2}mv_f^2 - W
\]

\(\text{Looks odd, but need lots of work to get to a high, slow orbit.} \)
Manœuvring in orbit.

To catch up, vessel 1 fires engines *backwards*, and loses energy. It thus falls to a lower orbit where it travels faster, until it catches up. It then fires its engines *forwards* in order to slow down (it climbs back to the original, slower orbit).

Example: In what orbit does a satellite remain above the same point on the equator?

Called the Clarke Geosynchronous Orbit

i) Period of orbit = period of earth's rotation
 \[T = 23.9 \text{ hours} \]
 \[T^2 = \left(\frac{4\pi^2}{GM} \right) r^3 \]
 \[r = \sqrt[3]{\frac{GM T^2}{4\pi^2}} = \ldots \]
 \[= 42,000 \text{ km} \quad \text{popular orbit!} \]