Particle dynamics Physics 1A, UNSW
Newton's laws:
force, mass, acceleration also weight
Friction - coefficients of friction
Hooke's Law
Dynamics of circular motion

Question. Top view of ball. What is its trajectory after it leaves the race?

then what?

Aristotle:
Galileo \& Newton:
$\underline{\boldsymbol{v}}=0$ is "natural" state
$\underline{\boldsymbol{a}}=0$ is "natural" state

Galileo: what if we remove the side of the bowl?

Newton's Laws

First law "zero (total) force \Rightarrow zero acceleration"
(It's actually a bit more subtle. More formally, we should say:

If $\Sigma \underline{\mathbf{F}}=0$, there exist reference frames in which $\underline{\mathbf{a}}=0$
called Inertial frames
What is an inertial frame? One in which Newton's laws are true.

- observation: w.r.t. these frames, distant stars don't accelerate

In inertial frames:

Second law $\quad \Sigma \underline{\mathbf{F}}=\mathrm{m} \underline{\mathbf{a}} \quad \Sigma$ is important: it is the total force that determines acceleration
$\Sigma \mathrm{F}_{\mathrm{x}}=\operatorname{ma}_{\mathrm{x}} \quad \Sigma \mathrm{F}_{\mathrm{y}}=$ may $_{\mathrm{y}} \quad \Sigma \mathrm{F}_{\mathrm{z}}=\mathrm{ma}_{\mathrm{z}} \quad 3 D \rightarrow 3$ equations
1 st law is special case of 2 nd What does the 2nd law mean?
$\Sigma \underline{\mathbf{F}}=m_{\mathrm{i}} \underline{\mathbf{a}} \quad$ and $\quad \underline{\mathbf{W}}=m_{\mathrm{g}} \underline{\mathbf{g}}$
are m_{i} and m_{g} necessarily the same?
called inertial and gravitational masses
$\underline{\mathbf{F}}=\mathrm{m} \underline{\mathbf{a}}$
a is already defined, but this leaves us with a puzzle:
i) Does this equation define m ?
ii) Does this law define \mathbf{F} ?
iii) Is it a physical law?
iv) All of the above?
v) How?
i) Given one mass, we could calibrate many forces by measuring the a they produced.
ii) Similarly, for any one $\underline{\mathbf{F}}$, we could calibrate many m's by the accelerations produced
iii) The 2nd Law is the observation that the m's and F's thus defined are consistent. eg Having used standard m to calibrate $\underline{\mathbf{F}}$, now produce $2 \underline{\mathbf{F}}$ (eg two identical F systems).

Is a now doubled? Every such experiment is a test of Newton's second law.

Or, for those who want it logically:
NeNewton 1: "Every body persists in its state of rest or of uniform motion in a straight line unless it is compelled to change that state by forces impressed on it."

An inertial frame of reference is one in which Newton's 1st law is true.
Such frames exist (and with respect to these frames, distant stars don't accelerate)
\therefore if $\Sigma \underline{\mathbf{F}}=0, \underline{\mathbf{a}}=0 \quad$ w.r.t. distant stars.
Force causes acceleration. $\underline{\mathbf{F}} / / \underline{\mathbf{a}}, \underline{\mathbf{F}} \propto \underline{\mathbf{a}}$

Another way of writing Newton 2: To any body may be ascribed a (scalar) constant, mass, such that the acceleration produced in two bodies by a given force is inversely proportional to their masses,
i.e. for same $\mathrm{F}, \quad \frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}$

We already have metre, second, choose a standard body for kg , then choose units of F (Newtons) such that

$$
\Sigma \underline{F}=m \underline{\mathbf{a}} \quad \text { Newton's first and second laws }
$$

(this eqn. is laws 1 \& 2, definition of mass and units of force) So, how big are Newtons?
Mechanics $>$ Newton's laws >5.2 Second law

Newton 3: "To every action there is always opposed an equal reaction; or the mutual actions of two bodies upon each other are always equal and directed to contrary parts"
Or
Forces always occur in pairs, $\underline{\mathbf{F}}$ and $-\underline{\mathbf{F}}$, one acting on each of a pair of interacting bodies.

Third law

$$
\underline{\mathbf{F}}_{\mathrm{AB}}=-\underline{\mathbf{F}}_{\mathrm{BA}}
$$

Why so? What would it be like if internal forces didn't add to zero?

Important conclusion: internal forces in a system add to zero. So we can now write the 1st and 2nd laws:
$\Sigma \underline{\mathbf{F}}_{\text {external }}=\mathrm{m} \underline{\mathbf{a}}$
Total external force $=\mathrm{m}$ a

Example Where is centre of earth-moon orbit?

$\left|\mathrm{F}_{\mathrm{e}} \mathrm{I}=\left|\mathrm{F}_{\mathrm{m}}\right|=\left|\mathrm{F}_{\mathrm{g}}\right|\right.$ equal \& opposite $\quad \begin{array}{c}\text { NB sign } \\ \text { conventions }\end{array}$
each makes a circle about common centre of mass
$\mathrm{F}_{\mathrm{g}}=\mathrm{m}_{\mathrm{m}} \mathrm{a}_{\mathrm{m}}=\mathrm{m}_{\mathrm{m}} \omega^{2} \mathrm{r}_{\mathrm{m}}$
$F_{g}=m_{e} a_{e}=m_{e} \omega^{2} r_{e}$
$\therefore \quad \frac{r_{m}}{r_{e}}=\frac{m_{e}}{m_{m}}=\frac{5.9810^{24} \mathrm{~kg}}{7.3610^{22} \mathrm{~kg}}=81.3$
(i)
earth-moon distance $r_{e}+r_{m}=3.8510^{8} \mathrm{~m}$
(ii) (two equations, two unknowns)
$r_{e}(1+81.3)=3.8510^{8} \mathrm{~m} \quad$ gives $\quad r_{m}=3.8010^{8} \mathrm{~m}, r_{e}=4.710^{6} \mathrm{~m}=4700 \mathrm{~km}$
\therefore centre of both orbits is inside earth (later we'll see that it is the centre of mass of the two)

Using Newton's laws

How do we use them to solve problems?
Newton's 2nd $\quad \Sigma \underline{\mathbf{F}}=$ ma \quad the Σ is important: in principle, we have to consider them all.
Newton's 3rd (forces come in pairs, $\underline{\mathbf{F}}$ and $-\underline{\mathbf{F}}$), so:

- internal forces add to zero. They don't affect motion

Therefore, applying Newton's 2nd, we use $\Sigma \underline{\mathbf{F}}_{\text {external }}=$ ma

- draw diagrams ('free body diagrams') to show only the external forces on the body of interest

Newton's second law is a vector equation

- write components of Newton's second law in 2 (or 3) directions

Example. As the bus takes a steady turn with radius 8 m at constant speed, you notice that a mass on a string hangs at 30° to the vertical. How fast is the bus going?

Draw a diagram with physics

We know:

tension in direction of string,
weight down, acceleration horizontal circular motion

The mass (and the bus) are in circular motion, so we can apply Newton 2:

$$
\mathrm{F}_{\text {horiz }}=\mathrm{ma}=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{r}}
$$

Only the tension has a horizontal component, so

$$
\begin{equation*}
\mathrm{T} \sin 30^{\circ}=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{r}} \tag{i}
\end{equation*}
$$

vertical acceleration $=0$, so

$$
\mathrm{T} \cos 30^{\circ}=\mathrm{mg}
$$

(ii) Again, we have two equations in two unknowns

Dived (i) by (ii) to eliminate T :

$$
\tan 30^{\circ}=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{r}} \frac{1}{\mathrm{mg}} \quad \text { which we rearrange to give }
$$

Don't stop yet! First, check the dimensions. Reasonable? Suggestions? Problems?

Problem. Horse and cart. Wheels roll freely.

What would you say to the horse?

Horizontal forces on cart (mass m_{c})

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{m}_{\mathrm{c}} \mathrm{a}_{\mathrm{c}}=\mathrm{m}_{\mathrm{c}} \mathrm{a}
$$

Horizontal forces on horse (mass m_{h})

$$
\mathrm{F}_{\mathrm{g}}-\mathrm{F}_{\mathrm{c}}=\mathrm{m}_{\mathrm{h}} \mathrm{a}
$$

Horizontal forces on Earth (mass mE)

$$
m_{E} \gg m_{h}+m_{c}
$$

In principle, the earth accelerates to the left. But $m_{E} \gg m_{h}$ so $a_{E} \ll a_{h}$
"light" ropes etc. Here, light means $m \ll$ other masses

Truck $\left(m_{t}\right)$ pulls wagon $\left(m_{w}\right)$ with rope $\left(m_{r}\right)$.
All have same \mathbf{a}.

Let's apply Newton's second to each element:
i) wagon: $-F_{2}=m_{w}$.
ii) rope: $\mathrm{F}_{1}-\mathrm{F}_{2}=\mathrm{m}_{\mathrm{r}} \mathrm{a}$
iii) truck: $-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{ext}}=\mathrm{m}_{\mathrm{t}}$
(ii)/(i) $\quad \rightarrow \frac{\mathrm{F}_{1}-\mathrm{F}_{2}}{-\mathrm{F}_{2}}=\frac{\mathrm{m}_{\mathrm{r}} \mathrm{a}}{\mathrm{m}_{\mathrm{w}} \mathrm{a}}$
$\therefore \quad$ if $\mathrm{m}_{\mathrm{r}} \ll \mathrm{m}_{\mathrm{w}}, \mathrm{F}_{1}=\mathrm{F}_{2} . \quad$ important result:
Forces at opposite ends of light ropes etc are equal and opposite.

Again, see Physclips if this isn't clear

Tension. When the mass of a string, coupling etc is negligible, forces at opposite ends are equal and opposite and we call this the tension in the string.

Example. (one dimensional motion only) Consider a train. Wheels roll freely. Locomotive exerts horizontal force F on the track. What are the tensions T_{1} and T_{2} in the two couplings?

Whole train accelerates together with a.
Look at the external forces acting on the train (horiz. only).

$$
\mathrm{F}=(\mathrm{m}+\mathrm{m}+\mathrm{m}) \mathrm{a} \rightarrow \mathrm{a}=\mathrm{F} / 3 \mathrm{~m}
$$

Look at external horiz forces on car 2:

$$
\mathrm{T}_{2}=\mathrm{ma}=\mathrm{F} / 3
$$

and on cars 2 and 1 together

Newton's 3rd:

A question for you: How does floor "know" to exert $\mathrm{N}=\mathrm{W}=\mathrm{mg}$?

Hookes law

From Physclips Ch 6.3
Mechanics > Weight and contact forces > 6.3 Hooke's law

Empirical law:

$$
F=-k x
$$

where k is the spring constant
k has units of $\mathrm{N} . \mathrm{m}^{-1}$.
$\mathrm{k}=61 \pm 1 \mathrm{~N} . \mathrm{m}^{-1}$

Hooke's Law:

Note that $\underline{\mathbf{F}}$ spring is in the opposite direction to x .
Experimentally (see Physclips example above), $\left|\underline{\mathbf{F}}_{\mathrm{s}}\right| \propto|x|$ over small range of x

$$
F=-k x
$$

Hooke's Law.

linear elastic behaviour - more in S2.
Linear approximations are v. useful!

Why is linear elasticity so common?

Consider the intermolecular forces F and energies U and separate into attractive and repulsive components:
See homework problem on interatomic forces

We'll do energy later, and we'll see:

Mass and weight

(inertial) mass m defined by $\mathrm{F}=\mathrm{ma}$

observation:

near earth's surface and without air,
all bodies fall with same $\mathrm{a}(=-\mathrm{g})$
(so far. This is still subject to experimental test!)
weight $\mathrm{W}=-\mathrm{mg}$
What is your weight?
Mechanics > Weight and contact forces > 6.2 Weight versus mass

$$
\begin{aligned}
& \text { mass determines "resistance to accelerate" (inertia) } \\
& \mathrm{m} \equiv \frac{\underline{\mathbf{F}}}{\underline{\text { total }}} \quad \begin{array}{l}
\text { in kilograms (kg) } \\
\text { or slugs* (Liberia; Myanmar; USA) }
\end{array} \\
& \underline{\mathbf{W}}=\mathrm{mg} \text { (down) } \begin{array}{l}
\text { in newtons (N) } \\
\text { or pounds force* (Liberia; Myanmar; USA) }
\end{array}
\end{aligned}
$$

Warning: do not confuse mass and weight, or their units
$\mathrm{kg} \rightarrow$ mass $\quad \mathrm{N} \rightarrow$ force ($\mathrm{kg} . \mathrm{m} . \mathrm{s}^{-2}$)
$\mathrm{kg} \mathrm{wt}=$ weight of $1 \mathrm{~kg}=\mathrm{mg}=9.8 \mathrm{~N}$

Why is $W \propto m ? \quad$ Why is $m_{g} \propto m_{i}$?
$\mathrm{ma}=\mathrm{F}=\mathrm{W}=($ Grav field $) .($ grav. property of body $)$

- Mach's Principle
not in our syllabus
- Principle of General Relativity
, but v.interesting questions
- Interactions with vacuum field,

Example Grav. field on moon $\mathrm{g}_{\mathrm{m}}=1.7 \mathrm{~ms}^{-2}$. An astronaut weighs 800 N on Earth, and, while jumping, exerts 2 kN while body moves 0.3 m . What is his weight on moon? How high does he jump on earth and on moon?
$m g_{E}=W_{E} \rightarrow m=\frac{800 \mathrm{~N}}{9.8 \mathrm{~ms}^{-2}}=82 \mathrm{~kg}$
$\mathrm{W}_{\mathrm{m}}=\mathrm{mg}_{\mathrm{m}}=82 \mathrm{~kg} 1.7 \mathrm{~ms}^{-2}=140 \mathrm{~N}$

Vertical (y) motion with constant acceleration. While feet are on ground,

$$
\begin{aligned}
& \Sigma \mathrm{F}=2 \mathrm{kN}-\mathrm{W}_{\mathrm{E}} \\
& =1.2 \mathrm{kN} \text { (Earth) }
\end{aligned}
$$

Moon:
$\Sigma \mathrm{F}=2 \mathrm{kN}-\mathrm{mg}_{\mathrm{m}}=1.9 \mathrm{kN}$

Jump has two parts:
feet on ground $\left(\mathrm{a}=\frac{\Sigma \mathrm{F}}{\mathrm{m}}\right) \quad \mathrm{v}_{\mathrm{i}}=0, \mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{j}}$
feet off ground $\mathrm{a}=-\mathrm{g} \quad \mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{j}}, \mathrm{vf}_{\mathrm{f}}=0$

While on ground:
$\mathrm{v}_{\mathrm{j}}^{2}-\mathrm{v}_{\mathrm{o}}^{2}=2 \mathrm{a}_{\mathrm{j}} \Delta \mathrm{y}=2 \frac{\Sigma \mathrm{~F}}{\mathrm{~m}} \Delta \mathrm{y}$
Earth $\rightarrow \mathrm{v}_{\mathrm{j}}=3.0 \mathrm{~ms}^{-1} \quad$ Moon $\rightarrow \mathrm{v}_{\mathrm{j}}=3.7 \mathrm{~ms}^{-1}$
While above ground:
$v^{2}-v_{j}^{2}=-2 g h \rightarrow h=\frac{v_{j}^{2}}{2 g}$
$h_{E}=0.5 \mathrm{~m} . \quad h_{m}=4 \mathrm{~m}$

Example (an important problem)
Light pulley, light inextensible string. What are the accelerations of the masses?

A number of different conventions are possible. The important thing is to define yours carefully and use it consistently.

Let a be acceleration (down) of $\mathrm{m}_{1}=$ acceleration (up) of m_{2}.
Take up as positive, look at the free body diagram for m_{1} : we are only interested in the vertical direction. By assumption, the acceleration is down. T is up. $\mathrm{m}_{1} \mathrm{~g}$ is down.

So Newton 2 for m_{1} gives:

$$
\begin{aligned}
& \mathrm{T}-\mathrm{m}_{1} \mathrm{~g}=-\mathrm{m}_{1} \mathrm{a} \\
& \mathrm{~T}-\mathrm{m}_{2} \mathrm{~g}=+\mathrm{m}_{2} \mathrm{a}
\end{aligned}
$$

And Newton 2 for m_{2} :
subtract:

$$
\begin{gathered}
-m_{1} g+m_{2} g=-m_{1} a-m_{2} a \\
a=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} g
\end{gathered}
$$

(Check: if $m_{1}=m_{2}, a=0$. If $\left.m_{2}=0, a=g.\right)$

Alternatively, we might have said

a_{1} be the acceleration up of m_{1} and a_{2} be the acceleration of m_{2}. Inextensible string so $\mathrm{a}_{1}=\mathrm{a}_{2}$. etc.

Contact forces

The normal component of a contact force is called the normal force \mathbf{N}. The component in the plane of contact is called the friction force \mathbf{F}_{f}.

Normal force: at right angles to surface, is provided by deformation.

- If there is relative motion, kinetic friction (whose direction opposes relative motion)
- If there is no relative motion, static friction (whose direction opposes applied force)

Mechanics $>$ Weight and contact forces $>$ 6.5 Static friction

See the experiment on Physclips Ch 6.5

Define coefficients of kinetic (k) and static (s) friction:

$$
\left|\mathrm{F}_{\mathrm{f}}\right|=\mu_{\mathrm{k}} \mathrm{~N} \quad\left|\mathrm{~F}_{\mathrm{f}}\right| \leq \mu_{\mathrm{s}} \mathrm{~N} \quad n . b .: \leq
$$

Friction follows this approximate empirical law
μ_{s} and μ_{k} are approx. independent of N and of contact area.
Often $\mu_{\mathrm{k}}<\mu_{\mathrm{s}}$.
(It takes less force to keep sliding than to start sliding.)

Example. θ is gradually increased to θ_{c} when sliding begins. What is θ_{c} ? What is a at θ_{c} ? (as before, free body diagram, $N 2$:)
Newton 2 in normal direction:

$$
\begin{equation*}
\mathrm{N}-\mathrm{mg} \cos \theta=0 \tag{i}
\end{equation*}
$$

Newton 2 in direction down plane:

$$
\begin{equation*}
m g \sin \theta-F_{f}=m a . \tag{ii}
\end{equation*}
$$

No sliding: $\quad a=0 \quad$ so total force is zero.

$$
\therefore \text { (ii) } \Rightarrow \mathrm{mg} \sin \theta=\mathrm{F}_{\mathrm{f}} \leq \mu_{\mathrm{s}} \mathrm{~N}
$$

$$
\text { (i) } \Rightarrow \quad=\mu_{\mathrm{s}} \mathrm{mg} \cos \theta
$$

$m g \sin \theta \leq \mu_{\mathrm{S}} \mathrm{mg} \cos \theta$
$\tan \theta \leq \mu_{\mathrm{S}}, \theta_{\mathrm{c}}=\tan ^{-1} \mu_{\mathrm{s}} \quad \quad$ useful technique for μ_{s}
Sliding at $\theta=\theta_{\mathrm{c}}: \quad \mathrm{a}>0$
\therefore (ii) $\Rightarrow \mathrm{a}=\mathrm{g} \sin \theta_{\mathrm{c}}-\frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{m}}$

$$
=g \sin \theta_{c}-\frac{\mu_{\mathrm{k}} \mathrm{~N}}{\mathrm{~m}}
$$

$$
\text { (i) } \Rightarrow \quad=\mathrm{g} \sin \theta_{\mathrm{c}}-\mu_{\mathrm{k}} \mathrm{~g} \cos \theta_{\mathrm{c}}
$$

we had

$$
\begin{aligned}
& \theta_{\mathrm{c}}=\tan ^{-1} \mu_{\mathrm{S}} \quad \text { so } \\
& \quad \mathrm{a}=\mathrm{g} \cos \theta_{\mathrm{c}}\left(\mu_{\mathrm{s}}-\mu_{\mathrm{k}}\right)
\end{aligned}
$$

Example. Rear wheel drive car, 3 kN weight on each front wheel, 2 kN on rear. Rubber-road:
$\mu_{\mathrm{s}}=1.5, \mu_{\mathrm{k}}=1.1$
$($ mass of car $) * \mathrm{~g}=$ weight $=2(3 \mathrm{kN}+2 \mathrm{kN})=10 \mathrm{kN}$
$\mathrm{m}=1$ tonne

Neglect rotation of car during accelerations. Assume that brakes produce 1.8 times as much force on front wheels as on back (why? Look at brake discs and pads). (i) What is max forward acceleration without skidding? What is maximum deceleration for (ii) not skidding? (iii) 4 wheel skid?
(i) $\quad \mathrm{F}_{\mathrm{fRs}} \leq \mu_{\mathrm{S}} \mathrm{N}_{\mathrm{R}}=\mu_{\mathrm{s}} \mathrm{W}_{\mathrm{R}} \quad$ on each rear wheel

$$
=1.5 \times 2 \mathrm{kN}=2.9 \mathrm{kN} \quad \text { on each rear wheel }
$$

$\mathrm{a}_{\text {max }}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{2 * 2.9 \mathrm{kN}}{1000 \mathrm{~kg}}=5.8 \mathrm{~ms}^{-2}$

Stopping.

For all wheels, $\mathrm{F}_{\mathrm{fs}} \leq \mu_{\mathrm{S}} \mathrm{N}=\mu_{\mathrm{s}} \mathrm{W}$
$\mathrm{F}_{\mathrm{fF}}=1.8 \mathrm{~F}_{\mathrm{fR}} . \quad \mu_{\mathrm{s}} \mathrm{W}_{\mathrm{F}}=1.5 \mu_{\mathrm{s}} \mathrm{W}_{\mathrm{R}}$,
\therefore front wheels skid first, when $\mathrm{F}_{\mathrm{fF}}>\mu_{\mathrm{s}} \mathrm{W}_{\mathrm{F}}$.
max total friction $=($ front + rear $)=\left(2+\frac{2}{1.8}\right) \cdot \mu_{\mathrm{S}} \mathrm{W}_{\mathrm{F}}$ wheels)

$$
=1400 \mathrm{~kg} \cdot \mathrm{wt}=14 \mathrm{kN}
$$

ii) $\quad a_{\max }=\frac{F_{\max }}{m}=\frac{14 \mathrm{kN}}{1000 \mathrm{~kg}}=14 \mathrm{~ms}^{-2}$
iii) $\mathrm{a}=\frac{\Sigma \mathrm{F}_{\mathrm{k}}}{\mathrm{m}}=\frac{\Sigma \mu_{\mathrm{k}} \mathrm{W}}{\mathrm{m}}=\ldots=11 \mathrm{~ms}^{-2}$

Questions:

Does area of rubber-road contact make a difference?
Does the size of the tire make a difference?

Centripetal acceleration and force

Circular motion with $\omega=$ const. and v const. eg bus going round a corner

Or consider a hammer thrower

Resultant force produces acceleration in the horizontal direction, towards the centre of the motion
Centripetal force, centripetal acceleration

Example Conical pendulum. (Uniform circular motion.) What is the frequency?
Free body diagram

Apply Newton 2 in two directions:
Vertical: $\mathrm{a}_{\mathrm{y}}=0 \quad \therefore \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0$
$\therefore \quad \mathrm{T} \cos \theta-\mathrm{W}=0$

$$
\mathrm{T}=\frac{\mathrm{mg}}{\cos \theta}
$$

Horizontal:

$$
\begin{aligned}
\frac{m v^{2}}{\mathrm{r}}=m a_{\mathrm{c}} & =\mathrm{T} \sin \theta \\
& =\frac{\mathrm{mg} \sin \theta}{\cos \theta}
\end{aligned}
$$

$\therefore \quad \frac{\mathrm{v}^{2}}{\mathrm{r}}=\mathrm{g} \tan \theta$
$\therefore \quad \mathrm{v}=\sqrt{\mathrm{rg} \tan \theta}$
$\therefore \quad \frac{2 \pi r}{\text { period }}=\sqrt{r g \tan \theta}$
$\therefore \quad \mathrm{f}=\frac{1}{\text { period }}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~g} \tan \theta}{\mathrm{r}}}$

Example. Foolhardy lecturer swings a bucket of bricks in a vertical circle.
How fast should he swing so that the bricks stay in contact with the bucket at the top of the trajectory?
$\underline{\mathbf{W}}$ and $\underline{\mathbf{N}}$ provide centripetal force.

$$
\mathrm{mg}+\mathrm{N}=\mathrm{ma}_{\mathrm{c}}
$$

For contact, we need

$$
\begin{aligned}
\mathrm{N} & \geq 0 \\
\text { so } \mathrm{ma}_{\mathrm{c}} & \geq \mathrm{mg}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}=\mathrm{r} \omega^{2}=\mathrm{r}\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2} \quad \text { T is easy to measure } \\
& \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{r}}{\mathrm{a}_{\mathrm{c}}}} \leq 2 \pi \sqrt{\frac{\mathrm{r}}{\mathrm{~g}}} \\
& \mathrm{r} \sim 1 \mathrm{~m} \rightarrow \mathrm{~T} \leq 2 \mathrm{~s}
\end{aligned}
$$

Example.

Apply force F at θ to horizontal. Mass m on floor, coefficients μ_{S} and μ_{k}. For any given θ, what F is required to make the mass move?

Eliminate 2 unknowns N and $F_{f} \rightarrow F\left(\theta, \mu_{s}, m, g\right)$
Stationary if $\quad \mathrm{F}_{\mathrm{f}} \leq \mu_{\mathrm{S}} \mathrm{N}$
Newton 2 vertical: $\quad \mathrm{N}=\mathrm{mg}+\mathrm{F} \sin \theta$ (2)
Newton 2 horizontal: $\quad \mathrm{F} \cos \theta=\mathrm{F}_{\mathrm{f}}$
$(1,3)$-> stationary if $\mathrm{F} \cos \theta \leq \mu_{\mathrm{S}} \mathrm{N}$

$$
\begin{align*}
& \mathrm{F} \cos \theta \leq \mu_{\mathrm{S}}(\mathrm{mg}+\mathrm{F} \sin \theta) \quad \text { (using (2)) } \\
& \mathrm{F}\left(\cos \theta-\mu_{\mathrm{S}} \sin \theta\right) \leq \mu_{\mathrm{s}} \mathrm{mg} \tag{*}
\end{align*}
$$

note importance $\left(\cos \theta-\mu_{\mathrm{S}} \sin \theta\right)$
if $\left(\cos \theta-\mu_{\mathrm{S}} \sin \theta\right)=0, \quad$ (F very large)

$$
\theta=\theta_{\text {crit }}=\tan ^{-1}\left(1 / \mu_{\mathrm{s}}\right) .
$$

If $\theta<\theta_{\mathrm{c}}$, then $\left(\cos \theta-\mu_{\mathrm{s}} \sin \theta\right)>0$
stationary if

$$
\mathrm{F} \leq \frac{\mu_{\mathrm{S}} \mathrm{mg}}{\cos \theta-\mu_{\mathrm{S}} \sin \theta}
$$

i.e. moves when $\mathrm{F}>\mathrm{F}_{\text {crit }}=\frac{\mu_{\mathrm{s}} \mathrm{mg}}{\cos \theta-\mu_{\mathrm{S}} \sin \theta}$

What if $\left(\cos \theta-\mu_{\mathrm{s}} \sin \theta\right)=0 \quad$?
$\theta=\theta_{\mathrm{c}}, \Rightarrow$?
$(*) \Rightarrow$ stationary if $\quad \mathrm{F} \leq \frac{\mu_{\mathrm{s}} \mathrm{mg}}{\cos \theta-\mu_{\mathrm{S}} \sin \theta} \quad$ i.e. stationary no matter how large F becomes.

Example Plane travels in horizontal circle, speed v, radius r. For given v, what is the r for which the normal force exerted by the plane on the pilot $=$ twice her weight? What is the direction of this force?

Centripetal force $F=m \frac{v^{2}}{r}=N \cos \theta$
Vertical forces: $\mathrm{N} \sin \theta=\mathrm{mg}$
eliminate $\theta: \quad N^{2}=m^{2}\left(\frac{v^{4}}{r^{2}}+g^{2}\right)$
$\left(\frac{N^{2}}{m^{2}}-g^{2}\right)=\frac{v^{4}}{r^{2}} \rightarrow r=\frac{\mathrm{v}^{2}}{\sqrt{\frac{N^{2}}{m^{2}}-g^{2}}}$
$\sin \theta=\frac{\mathrm{mg}}{\mathrm{N}}=\frac{1}{2}$
$\therefore 30^{\circ}$ above horizontal, towards axis of rotation

Question. Three identical bricks. What is the minimum force you must apply to hold them still like this?

Vertical forces on middle brick add to zero:

$$
2 \mathrm{Ff}_{\mathrm{f}}=\mathrm{mg}
$$

Definition of μ_{S}

$$
\mathrm{F}_{\mathrm{f}} \leq \mu_{\mathrm{s}} \mathrm{~N}
$$

$\therefore \quad \mathrm{N} \geq \frac{\mathrm{Ff}_{\mathrm{f}}}{\mu_{\mathrm{S}}}=\frac{\mathrm{mg}}{2 \mu_{\mathrm{S}}}$
Bricks not accelerating horizontally, so normal force from hands = normal force between bricks.
\therefore (each) hand must provide $\geq \frac{\mathrm{mg}}{2 \mu_{\mathrm{S}}}$ horizontally.
Vertically, two hands together provide 3 mg .

