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Work and Energy   (PHYS 1121 & 1131, UNSW, Session 1, 2011) 
• (the dot product)       S&J chapters 7.1-7.8; 8.1-8.5;  Physclips Ch 7  
• definition of work 
• definition of kinetic energy −>  
   restatement of Newton 2 
• conservative and   non-conservative forces 
• potential energy 
 
Sometimes, the physics sense of work is very like the use in normal language. This bloke is doing work 

 
 
but the trolley isn’t doing work. Why not?     See Physclips, Work and Energy 
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We need some new maths:   The scalar product.   dot product 
Why? e.g. Work: scalar, related to F_ ,  ds_   and θ.   because it makes maths easier 

       dW =  |F_ | |ds__ | cos θ   

         (later: also used for voltage dV = |E_ | |ds__ | cos θ    etc) 

  therefore define   a . b = ab cos θ  (= b . a)   pronounced "a dot b" 
 
Apply to unit vectors: 
 i_ . i_   = 1 . 1 cos 0°  =  1  =   j_ .j_   =  k_ .k_   

 i_ . j_   = 1 . 1 cos 90°  =  0  =   j_ .k_   =  k_ . i_   

Scalar product by components 
a_  . b_   = (ax i_  + ay j_  + az k_ ).(bx i_  + by j_  + bz k_ )    expand out to give nine terms… ugh 

 = (axbx) i_  . i_   + (ayby) j_ .j_  + (azbz) k_ .k_      where     i_  . i_   = j_ .j_  = k_ .k_  = 1 

    +  (axby + aybx) i_ .j_    +  (..) j_ .k_   + (..) k_ . i_     and these terms are all zero, so 

 
a_  . b_   =  axbx + ayby + azbz        which is an important result  

 
And, at no extra charge, we get a useful geometrical tool 

Problem. Find the angle between 
a_   =  4 i_  − 3 j_  + 7 k_   

b_   = 2 i_  + 5 j_  −3 k_  
      Hooee! Imagine doing this by geometry. Let's use dot product 

which, using the result above,  we can two ways: 

ab cos θ  =  a_  . b_   =  axbx + ayby + azbz     

cos θ  =  
axbx + ayby + azbz

ax2 + ay2 + az2 bx2 + by2 + bz2
   =  

€ 

4 *2 − 3*5 − 7* 3

42 + 32 + 72 22 + 52 + 32
 

=  ....             hit the calculator to give: 

−> θ  =    122° 
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Is it easier for the sailor to climb the 
mast using the halyard (a rope passing 
through a pulley at the top of the mast)? 

Why? 

  
Neglecting acceleration: 

Without rope: 

 W  =  Ffeet + Fhands  

 

With rope: 

 W  =  Ffeet + Fhands + T 

but  Fhands  =  T       so 

 W  =  Ffeet + 2 Fhands 

During the moment when Ffeet 
= 0, your hands apply 50% less 
force! But how do you "pay 
for" the reduction in force?  
Let's introduce work 

F h
F h

F f
F f

TT T

W W

  

 

Definition of work 

  

F F

ds
θ

  

When force varies, use differential displacement ds__  

 

 dW  =  F ds cos θ  =  F.ds      we can think of this in two ways: 

(F) (ds cosθ)   −>  F * component of ds // F, or 

(F cosθ) (ds)   −>      ds * component of F // ds 

 

 W  =  ⌡⌠
0

L
  F cos θ ds 

if F & θ are constant, we get  W  = FLcos θ    But this is the baby version: forces do vary! 
SI Unit:  1 Newton x 1 metre  =  1 Joule 
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SIMPLE MACHINES (pulleys, levers, screws, inclined planes etc) 

Example. How much work is done by lifting 100 kg vertically by 1.8 m very slowly? 
 

    

   

  

Slow  ∴  Fapplied  ≅  mg 

W   =  mg d cos 0°     = mgh :  more later 
  =  1.8 kJ. 

 
Not a lot – how much if you walk up one flight of stairs? 
Yet it is harder to do, because the force is inconveniently large. Consider: 

    

T
T T

mg

mg   

If the rope and pulleys are light, and if the accelerations are negligible, then 
Force on LH pulley 
ma  ≅  0  =  2T − mg 
∴   T  =  mg/2 

If mass rises by D, word done = mgD. 
But rope shortens on both sides of rising pulley, 
if mass rises by D, rope must be pulled 2D, so  
work done  = T * 2D  =  mgD 
 
We do the same work with less force by covering more distance. 
 

  

Example. What is the work done by gravity in a circular orbit? 
 

W  =  ⌡⌠ F ds cos θ  

             =  0 

 Historically important: no work to do! 
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Example. Fgrav ∝ 1/r2. How much work is done to move m = 1 tonne from earth's surface (r = 6500 km) 
to r = ∞? 

W    = ⌡⌠  F ds cos θ 

 = ⌡⌠  F dr   

F ds
θ
dr

g

 

F =  – Fgrav = 
Cm
r2        more later, but for now, what is the constant C? What do we know? 

On earth's surface, we've dropped objects so we know that know that a = F/m = – 9.8 ms-2   

∴  C =  (9.8 ms-2)(6.5 106 m)2 =  4.1 1014 m3s-2 

W =  
6500km
∫ Cm

r2 dr   note: potential energy proportional to – 1/r 

 =  - Cm 

€ 

1
∞
−

1
6.5106m

$ 

% 
& 

' 

( 
)    Not equal to mgh.  More on this later 

 = 

 =  6.3 1010  J    = 63 GJ.     Worse: rockets very inefficient: as we'll see later    

 
Work to deform spring  
 

F springF spring F applied

x

  

No applied force 
(x = 0) 
Hooke's law: 

 
Work done by spring  =  ⌡⌠ Fspring.dx  

 =    ⌡⌠ -kx.dx    =   –  
1
2  kx2  +  0 

Work done on spring  =  ⌡⌠ Fapplied.dx  

 =    ⌡⌠ kx.dx    =   +  
1
2  kx2 

(= work stored in spring) 



 

6 

The work-energy theorem 
(Total) force F acts on mass m in x direction. 

vi vfvF
 

Work done by F  =  ⌡⌠
i

f
  Fdx       (use F = ma)   

 =  ⌡⌠
i

f
  m 

dv
dt   dx   =  ⌡⌠

i

f
  m 

dx
dt   dv 

 =   ⌡⌠
i

f
 m v.dv   =   [ 1

2  mv2 ]f
i  

Work done by F   =   
1
2  mvf2 -  

1
2  mvi2  ≡ ΔK 

Define kinetic energy  K  ≡    
1
2  mv2 

Increase in kinetic energy of body  = work done by total force acting on it. 
This is a theorem, ie a tautology 

because it is only true by definition of KE and by Newton 2. 
∴ restatement of Newton 2 in terms of energy. Not a new law 

Work energy theorem  (baby version) 
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      important road safety lesson 

doubling the speed    v -> 2v      would give      K -> 4K    four times as much kinetic energy 
so same braking force must act over 4 times the distance  

Power.  is the rate of doing work 

 Average power     P-   ≡  
W
Δt   

 Instantaneous power P  =  
dW
dt   

SI unit:  1 Joule per second  ≡   1 Watt  (1 W) 

Example   Jill (m = 60 kg) climbs the stairs in Matthews Bldg and rises 50 m in 1 minute. How much 
work does she do against gravity? What is her average output power?  (neglect accelerations) 

W =  ⌡⌠ F_ . ds__    =  ⌡⌠  Fy dy  (only y displacement matters, because mg acts in (-ve) y direction) 

Fy ≅  mg 

W   =  mg ⌡⌠  dy  =  mg Δy  

 =  29 kJ          (cf K = 
1
2 mv2 ~  20 - 40 J) 

P-    ≡  
W
Δt   =  

mg Δy
Δt    =  490 W   

(to give a scale, humans can produce 100s of W, 
car engines several tens of kW) 

(1 horsepower ≡ 550 ft.lb.s-1 = 0.76 kW) 
 

Potential energy.  
e.g. Compress spring, do W on it, but get no K. Yet can get energy out: spring can expand and give K to 
a mass. −>  Idea of stored energy. 
 
e.g. Gravity: lift object (slowly), do work but get no K. Yet object can fall back down and give back K.  
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Recall  Wagainst grav  =  mg Δy  i.e.  W = W(y) 

 

But:  Slide mass slowly along a surface. Do work against friction, but can't recover this energy 
mechanically. Not all forces "store" energy. Look at these three diagrams: 
 

 
 
For the spring and gravity, when we change the direction of the displacement the force doesn't change 
direction, so the sign of the work done changes, so, round a closed path, the work done is zero. 
For friction, when we change the direction of the displacement the force does change direction, so the 
sign of the work done doesn't changes, so friction does negative work, and we do positive work against it. 
So we have two very different sorts of forces. 
 



 

9 

Conservative and non-conservative forces    (same examples) 

Wagainst gravity  = − ⌡⌠
i

f
  Fgdr cos θ  

F ds
θ
dr

g

 

 = − ⌡⌠
i

f
  Fg dz 

 =  mg ⌡⌠
i

f
  dz   

 =  mg (zf - zi)  in uniform field 

 
W is uniquely defined at all r_ , i.e. W = W(r_ ) 
If zf - zi are the same, W = 0.  

∴  Work done against gravity round a closed path = 0  This is the definition 
Gravity is a conservative force 
 
Spring 

Wagainst spring  =  − ⌡⌠
i

f
   Fspring.dx 

 =   − ⌡⌠
i

f
 -kx.dx     

 =     
1
2  k(xf2 − xi2)     

W is uniquely defined at all x, i.e. W = W(x) 
xf = xi  ⇒  W = 0.  

∴  Work done round a closed path = 0 
Spring force is a conservative force 
 

 so it has stored or potential energy: symbol U. 

Friction 
dWagainst fric  = − Ff ds cos θ 

but Ff always has a component opposite ds 

∴  dW always ≥ 0.   (we never get work back) 
∴  cannot be zero round closed path, ∴ W =/   W(r_ ) 
∴ friction is a non-conservative force 
 
Note that direction of friction (dissipative force) is always against motion. Direction of g doesn't change 
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Potential energy 
For a conservative force F_  (i.e. one where work done against it, W = W(r_))  we can define potential 
energy U by ΔU = Wagainst.     i.e. 

 ΔU  = − ⌡⌠
i

f
   F dr cos θ 

 
Same examples:  spring 

     ΔUspring   =  − ⌡⌠
i

f
   Fspring.dx 

   =    

   =     
1
2  k(xf2 − xi2) 

 
Choice of zero for U is arbitrary. 
Here U = 0 at x = 0 is obvious, so 

 Uspring  =   
1
2  kx2 

From energy to force: 

U =  − ⌡⌠  F ds where ds is in the direction // F 

 F  =  −  
dU
ds   

in fact   Fx  =  −  
dU
dx   , Fy  =  −  

dU
dy   , Fz  =  −  

dU
dz   

Spring:   Uspring  =   
1
2  kx2   ∴   Fspring  =  − kx 

Gravity:   Ug  =  mgz    ∴  Fg  =   − 
dU
dz    =  − mg 

Energy of interaction:   
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r

F
repulsive

attractive

total

U

r

Hooke's law
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Energy diagrams and equilibria:
 

local 
minimum

global 
minimum

unstable 
equilibrium

 

Treat this as y(x) for a particle in a uniform 
gravitational field, we can see U(x) and imagine 
the direction of force (–dU/dx).  
Minima give stable equilibria: stable with 
respect to small perturbations. Maxima give 
unstable equilibria.  
Similar energy diagrams in chemistry and 
elsewhere.

 
Conservation of mechanical energy   (sometimes!) 

Recall:  Increase in K of body = work done by total force acting on it.       (restatement of Newton 2) 
But, if all forces are conservative, work done by these forces   = − ΔU  (definition of U) 
∴   if only conservative forces act,  ΔK =  − ΔU 
We define mechanical energy 
 Ε  ≡  K + U 
so, if only conservative forces act,  ΔE =  0. 

we can make this stronger. 
 
Work done by non-conservative forces 
Define internal energy Uint where 

 ΔUint  = − Work done by n-c forces 
     (=  + Work done against n-c forces) 
 

Recall defn of K:  ΔK = work done by Σ force 
∴     ΔK  =  − ΔU − ΔUint 

∴      ΔK  + ΔU + ΔUint = 0 

If n-c forces do no work, then ΔUint = 0, so: 

If non-conservative forces do no work,  
ΔE  ≡  ΔK  + ΔU  =  0 

or:      mechanical energy E is conserved 
Equivalent to Newton 2, but useful for many mechanics problems where integration is difficult. 
State the principle carefully! 

       Never, ever write: "kinetic energy = potential energy" 

 
3 reasons why not: It's not true. In general, it gives the wrong answer. It makes examiners angry. 
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Classic problem. Child pushes off with vi. How fast is the s/he going at the bottom of the slide? Neglect 
friction (a non-conservative force). 

W

N

W

N

Σ F
h

v

 
i) By Newton 2 directly: 

v  =  ⌡⌠
top

bottom
  a dt  =  ⌡⌠

top

bottom
    

F
m    =  ⌡⌠

top

bottom
   g cos θ dt  =  ..... 

ii) Using work energy theorem (Newton 2 indirectly): 
Non-conservative forces do no work, ∴ mechanical energy is conserved, i.e. 
ΔE = ΔK + ΔU = 0
Kf - Ki + Uf - Ui = 0      or          

Ef  =  Ei
Kf + Uf = Ki + Ui

      either way we get 

   
1
2  mvf2 −  

1
2  mvi2  +  mgyf  − mgyi  = 0 

rearrange −> vf  =  vi2 + 2g(yi - yf)  
 
Conservation of energy   

observation: for many forces, W = W(r_ ), i.e. the work done by or against these forces is a function only 
of position.  Therefore, for these forces only, it’s useful to define U = U(r_ ). 
observation: for all systems yet studied, Uint is a state function, i.e. Uint = Uint(measured variables) 

Hence idea of internal energy.  e.g.: 
Friction, (− Uint) = heat produced when work is done against friction. 

Air resistance  (− Uint) is sound and heat. 

Combustion engines and animals:  +Uint comes from chemical energy 
 
 ΔK  + ΔU + ΔUint = 0 

 
is statement of Newton 2 plus definitions of K, U, Uint. 

The statement that ΔUint is a state function is the first law of thermodynamics. It is a law, ie falsifiable. More on 
this in Heat. 
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Example. Freda (m = 60 kg) rides pogo stick (m << 60 kg) with spring constant k = 100 kN.m-1. 
Neglecting friction, how far does spring compress if jumps are 50 cm high? 

b

t

yb

yt
xb

   patent extract:  
Non-conservative forces do no work, ∴ mechanical energy is conserved, i.e. 
Ebottom  =  Etop   

Kb + Ub = Kt + Ut    (U = Ugrav + Uspring) 
1
2  mvhoriz2 + (mgyb  + 

1
2  kxb2)   ≅  

1
2  mvhoriz2 + (mgyt  +  

1
2  kxt2) 

mg(yt − yb) ≅ 
1
2  kxb2 

∴    xb  ≅ 
2mg(yt − yb)

k   substitute  ≅  80 mm. 

h
v

r
1

h2
 

Example. Slide starts at height h1. Later there is a hump with height h2 and (vertical) radius r. What is 
the minimum value of h2 − h1 if slider is to become airborne? Neglect friction, air resistance. 

Over hump, ac = 
v2
r   (down) . Airborne if g < ac, i.e.  if  v22 > gr. 

No non-conservative forces act so 
 E2 = E1 

 U2 + K2  =  U1 + K1 

 mgy2 + 
1
2  mv22  =  mgy1 + 

1
2  mv12 

 
1
2  mv22  =  mg(y1 − y2) 

 (y1 − y2)  =  
v22

2g     >   
gr
2g   =  

r
2  
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Example  Bicycle and rider (80 kg) travelling at 20 m.s-1 stop without skidding. µs = 1.1. What is 
minimum stopping distance? How much work done by friction between tire and road? Between brake pad 
and rim? Wheel rim is ~300 g with specific heat ~ 1 kJ.kg-1, how hot does it get? 
friction −> deceleration −> stopping distance 

 |a|  =  
Ff
m   ≤  

µsN
m    =  µsg 

 |a|  ≤  µsg 

vf2 − vi2 = 2as −>  s  =  
vf2 − vi2

2a   

 s  ≥  |− vi2

2µsg
 |  =  19 m 

Work done by friction between tire and road? 
No skidding, ∴  no relative motion, ∴ W = 0. 
Between pad and rim? Here there is relative motion.  
All K of bike & rider  −>  heat in rim and pad 
 W  =  ΔK  =  Kf − Ki   =  −  16 kJ 

 Q  =  mCΔT   ......  
 ΔT  ~  50 °C   (Heat and this definition come later in the syllabus) 
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Example  Which way is it easier to drag an object? 

m
F

m
F

m
F'
θ

F

θ

mg

N

F
f

 
Suppose we move at steady speed, a = 0. Which requires less F? Which requires less work? 

mechanical
equilibrium   −>     

horizontal     F cos θ  =  Ff
vertical N + F sin θ = mg   

sliding   −>    Ff  = µkN 

   F cos θ  = µkN   

eliminate N −>  F cos θ  =  µk(mg − F sin θ) 

    F  =  
µkmg

cos θ + µk sin θ  

when θ = 0,      F' =  µkmg 

F < F'  if cos θ + µk sin θ  > 1,  
i.e. if µk large

& θ small   

Work done =  Fs cos θ  =  Ffs 

  =  µkNs  =  µks(mg − F sin θ)     decreases with θ 

 
Puzzle     There’s a prize for the first completely correct answer to this one. 

R
h

r

v

rr'

90°

 
How high should h be so that it can loop the loop?  Note the cross section of the track. h and R are 
measured from the rolling positions of the centre of the ball 
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Example. A hydroelectric dam is 100 m tall. Assuming that the turbines and generators are 100% efficient, 
and neglecting friction, calculate the flow of water required to produce 10 MW of power. The output pipes 
have a cross section of 5 m2. 

 
Nett effect: ~ stationary water lost from top of dam, water appears with speed v at bottom.    

need power…
dW
dt     time derivative…     Let flow be 

dm
dt   .    

dW  ≡  
work done
by water     

        =  − 
Work done

on water   =  − 
energy increase

of water   

dW  =  − dE  =  − dK−  dU 

=  − ⎝
⎛

⎠
⎞1

2 dmv2 − 0   − ( )0 − dm.gh   =  dm⎝⎜
⎛

⎠
⎟
⎞

gh − 
v2
2   

P  =  
dW
dt    =  

dm
dt ⎝⎜
⎛

⎠
⎟
⎞

gh − 
v2
2   

Problem: v depends on 
dm
dt   

v

A
v.dt    

dV
dt    =  

A.(v.dt)
dt    =  Av 

Density: ρ ≡  
mass

volume    =  
m
V     so m = ρV 

dm
dt    =  ρ

dV
dt    =  ρAv 

P  =  ρAv⎝⎜
⎛

⎠
⎟
⎞

gh − 
v2
2   

v3 − (2gh)v  +  
2P
ρA   = 0      we can solve a cubic, but it's messy. It's a one sig fig problem, so try an approximation  

Neglect v3  −>  v = 
P

ghρA   =  2 m/s   

and indeed we see that  v3<< other terms. Think about this: if you were designing the generator, would you have 
made the kinetic energy term comparable with the potential energy or work terms? 

Flow = vA  =  10 m3/s   −>  10 tonne/s
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Some quantitative examples: 
How much work is required to accelerate a car  
i) from 0 to 10 km/hr?   
ii) from 100 to 110 km/hr? 
(As asked, this is work done by total force: it includes 
negative work done by air resistance) 
Work energy theorem 

 Wtotal  =   
1
2 mvf2 −  

1
2 mvi2 

i) 
1
2(1000 kg)⎝⎜

⎛
⎠⎟
⎞10 000m

3 600 s  
2
 − 0  =  4 kJ 

ii) Wtotal  =  …          =  80 kJ 

 

dW  =  dK  =  d(1
2 mv2)  =  mv dv  

 
 

Energy density:  
Small rechargeable NiCad: 
600 mA.hr  and 1.25 V   
−>  (0.6 A)(3600 s)(1.25 V)  =  3 kJ 
(3 kJ)/(20 g)   = 150 kJ/kg  =  0.15 MJ/kg 
Car battery: 
Up to 100 Amp hours @ 12 V  −> 4 MJ 
< 0.5 MJ/kg 

warning: don't try to extract this quickly 
Lithium ion: 
100 W.hour/kg  ->  0.36 MJ/kg        (some quote 

up to 0.9 MJ/kg) 
 

 MJ/litre MJ/kg 
Petrol 29   45      
LPG 22 34  
Ethanol 19 30  
Diesel 40 63 
 
Speeding bullet 
1
2mv2

m    =  
1
2 v2  ~  

1
2 (500 m/s) 2 = 0.1 MJ/kg 

 

Example:  What is the intensity of solar radiation? Psun = 3.9 1026 W. Earth is 150 million km from sun. 

R

        Intensity  ≡  
P

4πr2
     =  ....  =  1.38 kWm-2    called 'solar constant' 

above atmosphere, |__   radiation 
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Energy in SHM      (Not in Mechanics syllabus but need in PHYS1231)   
See Oscillations in Physclips 

 x = A sin ωt  v = 
dv
dt    =  Aω cos ωt  

 U =  
1
2  kx2        K =  

1
2  mv2     

 

E  =  U + K  =   
1
2  kA2 sin2 ωt +  

1
2  mA2ω2 cos2 ωt   

but     ω  =  
k
m                so k  =  mω2 

 E   =   
1
2  mω2A2 sin2 ωt +  

1
2  mA2ω2 cos2 ωt  

       =   
1
2  mω2A2 (sin2 ωt +  cos2 ωt) 

 Aω = vmax   

 E  =  Kmax  = Umax 

 
 
 


