PHYS 1A Work and Energy Joe Wolfe, UNSW

The scalar product. *dot product*

Why? e.g. Work: scalar, related to \mathbf{F}, \mathbf{ds} and θ.

\[
\text{dW} = |\mathbf{F}| |\mathbf{ds}| \cos \theta
\]

(also $dV = |\mathbf{E}| |\mathbf{ds}| \cos \theta$ etc)

\[\vec{a} \cdot \vec{b} \equiv ab \cos \theta \quad (= \vec{b} \cdot \vec{a})\]

Apply to unit vectors:

\[\vec{i} \cdot \vec{i} = 1 \cdot 1 \cos 0^\circ = 1 = \vec{i} \cdot \vec{j} = \vec{k} \cdot \vec{k}\]
\[\vec{i} \cdot \vec{i} = 1 \cdot 1 \cos 90^\circ = 0 = \vec{i} \cdot \vec{k} = \vec{k} \cdot \vec{i}\]

Scalar product by components

\[\vec{a} \cdot \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \cdot (b_x \vec{i} + b_y \vec{j} + b_z \vec{k})\]
\[= (a_x b_x) \vec{i} \cdot \vec{i} + (a_y b_y) \vec{j} \cdot \vec{j} + (a_z b_z) \vec{k} \cdot \vec{k}\]
\[+ (a_x b_y + a_y b_x) \vec{i} \cdot \vec{j} + (..) \vec{j} \cdot \vec{k} + (..) \vec{k} \cdot \vec{i}\]

\[\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z\]

Problem. Find the angle between

\[\vec{a} = 4 \vec{i} - 3 \vec{j} + 7 \vec{k}\]
\[\vec{b} = 2 \vec{i} + 5 \vec{j} - 3 \vec{k}\]

\[ab \cos \theta = \vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z\]

\[\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}}\]

\[\rightarrow \theta = 122^\circ\]

Definition of work

\[
\text{dW} = F \text{ ds } \cos \theta
\]

When force varies, use differential displacement ds

\[dW = F \text{ ds } \cos \theta \]

\[\rightarrow F \text{ component of ds } // \mathbf{F}, \text{ or}\]
\[F \cos \theta \text{ (ds)} \rightarrow \text{ ds } \text{X component of } \mathbf{F} // \text{ds}\]

\[W = \int \text{F cos } \theta \text{ ds}\]

if F and \(\theta \) are constant, we get \[W = FL \cos \theta\]

SI Unit: 1 Newton x 1 metre = 1 Joule
Example. How much work is done by lifting 100 kg vertically by 1.8 m very slowly?

\[\text{Slow} \quad \therefore F_{\text{applied}} \approx mg \]
\[W = mg \cdot d \cos \theta \]
\[= 1.8 \text{ kJ}. \]

Not a lot, yet it is hard to do, because the force is inconveniently large.

Consider:

If the rope and pulleys are light, and if the accelerations are negligible, then

Force on LH pulley
\[ma \approx 0 = 2T - mg \]
\[\therefore T = mg/2 \]

If mass rises by \(D \), work done = \(mgD \).

But rope shortens on both sides of rising pulley,

if mass rises by \(D \), rope must be pulled \(2D \),

so work done = \(T \cdot 2D = mgD \)

Example. What is the work done by gravity in a circular orbit?

\[W = \int F \, ds \cos \theta = 0 \]

Example. \(F_{\text{grav}} \propto 1/r^2 \). How much work is done to move \(m = 1 \) tonne from earth's surface (\(r = 6500 \text{ km} \)) to \(r = \infty \)?

\[W = \int F \, ds \cos \theta \\
= \int F \, dr \\
F = -F_{\text{grav}} = \frac{Cm}{r^2} \quad \text{more later} \]

On surface \(F/m = 9.8 \text{ ms}^{-2} \)
\[\therefore C = (9.8 \text{ ms}^{-2})(6.5 \times 10^6 \text{ m})^2 = 4.1 \times 10^{14} \text{ m}^2\text{s}^{-2} \]
\[W = \int_{6500 \text{ km}}^{\infty} \frac{Cm}{r^2} \, dr \\
= -Cm \left(\frac{1}{\infty} - \frac{1}{6.5 \times 10^6} \right) \\
= 6.3 \times 10^{10} \text{ J} = 63 \text{ GJ}. \]
Work to deform spring

No applied force \((x = 0)\)

Hooke's law: \(F = -kx\)

Work done by spring = \(\int F_{\text{spring}} \, dx\)

\[= \int -kx \, dx = -\frac{1}{2}kx^2\]

Work done on spring = \(\int F_{\text{applied}} \, dx\)

\[= \int kx \, dx = +\frac{1}{2}kx^2 \quad (= \text{work stored in spring})\]

The work-energy theorem

(Total) force \(F\) acts on mass \(m\) in \(x\) direction.

Work done by \(F\) = \(\int_{i}^{f} F \, dx\) \quad \text{(use } F = ma\text{)}

\[= \int_{i}^{f} m \frac{dv}{dt} \, dx = \int_{i}^{f} m \frac{dx}{dt} \, dv\]

\[= \int_{i}^{f} mv \, dv = \left[\frac{1}{2}mv^2 \right]_{i}^{f}\]

Work done by \(F\) = \(\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \equiv \Delta K\)

Define \textbf{kinetic energy} \(K \equiv \frac{1}{2}mv^2\)

Increase in kinetic energy of body = work done by \textbf{total} force acting on it.

\[
\text{This is a theorem, ie a tautology because it is only true by definition of KE and by Newton 2.} \\
\therefore \text{restatement of Newton 2 in terms of energy. Not a new law}
\]
Power. is the rate of doing work

Average power \(\bar{P} = \frac{W}{\Delta t} \)

Instantaneous power \(P = \frac{dW}{dt} \)

SI unit: 1 Joule per second \(\equiv \) 1 Watt (1 W)

Example Jill (m = 60 kg) climbs the stairs in Matthews Bldg and rises 50 m in 1 minute. How much work does she do against gravity? What is her average output power? (neglect accelerations)

\[
W = \int F_y \, ds = \int F_y \, dy
\]

\(F_y = mg \)

\[
W = mg \int dy = mg \Delta y = 29 \text{ kJ}
\]

(cf \(K = \frac{1}{2}mv^2 \approx 20 - 40 J \))

\[
\bar{P} = \frac{W}{\Delta t} = \frac{mg \Delta y}{\Delta t} = 490 \text{ W}
\]

(humans can produce 100s of W, car engines several tens of kW)

(1 horsepower \(\approx 550 \text{ ft.lb.s}^{-1} = 0.76 \text{ kW} \))

Potential energy.

e.g. Compress spring, do W on it, but get no K. Yet can get energy out: spring can expand and give K to a mass. \(\rightarrow \) Idea of stored energy.

e.g. Gravity: lift object (slowly), do work but get no K. Yet object can fall back down and get K.

Recall \(W_{\text{against grav}} = mg \Delta y \) i.e. \(W = W(y) \)

But: Slide mass slowly along a surface. Do work against friction, but can't recover this energy mechanically. Not all forces "store" energy

Conservative and non-conservative forces

(same examples)

\[
W_{\text{against grav}} = -\int_i^f F_g \, dr \cos \theta
\]

\[= -\int_i^f F_g \, dz \]

\[= mg \int_i^f dz \]

\[= mg (z_f - z_i) \] \(\text{in uniform field} \)

W is uniquely defined at all \(\mathbf{r} \), i.e. \(W = W(\mathbf{r}) \)

If \(z_f - z_i \) are the same, \(W = 0 \).

\(\therefore \) Work done against gravity round a closed path = 0

Gravity is a conservative force
Compare spring

\[W_{\text{against spring}} = -\int F_{\text{spring}} \, dx = -\int -kx \, dx \]

\[= \frac{1}{2} k(x_f^2 - x_i^2) \]

W is uniquely defined at all x, i.e. \(W = W(x) \)
\(x_f = x_i \Rightarrow W = 0. \)

\(\therefore \) Work done round a closed path = 0

Spring force is a **conservative force**

so it has stored or potential energy: symbol \(U \).

with friction

\[dW_{\text{against fric}} = -F_f \, ds \cos \theta \]

but \(F_f \) always has a component **opposite \(ds \)**

\(\therefore \) \(dW \) always \(\geq 0. \)

\(\therefore \) cannot be zero round closed path, \(\therefore W \neq W(\mathbf{r}) \)

\(\therefore \) friction is a **non-conservative force**

Note that direction of friction (dissipative force) is always against motion.

Potential energy

For a **conservative** force \(\mathbf{F} \) (i.e. one where work done against it, \(W = W(\mathbf{r}) \)) we can define potential energy \(U \) by \(\Delta U = \frac{dW}{dt} \).

\[\Delta U = -\int F \, dr \cos \theta \]

Same example: **spring**

\[\Delta U_{\text{spring}} = -\int F_{\text{spring}} \, dx \]

\[= \frac{1}{2} k(x_f^2 - x_i^2) \]

Choice of zero for \(U \) is arbitrary.

Here \(U = 0 \) at \(x = 0 \) is obvious, so

\[U_{\text{spring}} = \frac{1}{2} kx^2 \]
From energy to force:
\[U = - \int F \, ds \] where \(ds \) is in the direction \(\parallel F \)

\[F = - \frac{dU}{ds} \]

In fact
\[F_x = - \frac{dU}{dx}, \quad F_y = - \frac{dU}{dy}, \quad F_z = - \frac{dU}{dz} \]

Spring: \(U_{\text{spring}} = \frac{1}{2} kx^2 \) \(\therefore F_{\text{spring}} = -kx \)

Gravity: \(U_g = mgz \) \(\therefore F_g = -\frac{dU}{dz} = -mg \)

Energy of interaction:

![Diagram of energy interaction](image)

Conservation of mechanical energy

Recall: Increase in \(K \) of body = work done by total force acting on it. \((\text{restatement of Newton 2})\)

But, if all forces are conservative, work done by these forces = \(-\Delta U\) \((\text{definition of } U)\)

\(\therefore \) if only conservative forces act, \(\Delta K = -\Delta U \)

We define mechanical energy
\[E \equiv K + U \]

so, if only conservative forces act, \(\Delta E = 0 \).

We can make this stronger.

Work done by non-conservative forces

Define internal energy \(U_{\text{int}} \) where
\[\Delta U_{\text{int}} = -\text{Work done by n-c forces} \]
\[(= + \text{Work done against n-c forces}) \]

Recall def\(n \) of \(K \): \(\Delta K = \text{work done by } \Sigma \text{ force} \)

\(\therefore \quad \Delta K = -\Delta U - \Delta U_{\text{int}} \)

\(\therefore \quad \Delta K + \Delta U + \Delta U_{\text{int}} = 0 \)

If n-c forces do no work, then \(\Delta U_{\text{int}} = 0 \), so:

If non-conservative forces do no work,
\[\Delta E \equiv \Delta K + \Delta U = 0 \]

or: \textbf{mechanical energy } \(E \) \textbf{ is conserved}

Equivalent to Newton 2, but useful for many mechanics problems where integration is difficult.

State the principle carefully! \textbf{Never, ever write}: "kinetic energy = potential energy"
Classic problem. Child pushes off with v_i. How fast is the s/he going at the bottom of the slide? Neglect friction (a non-conservative force).

![Diagram of a child on a slide](image)

i) By Newton 2 directly:

$$v = \int_{\text{top}}^{\text{bottom}} a \, dt = \int_{\text{top}}^{\text{bottom}} \frac{F}{m} \, dt = \int_{\text{top}}^{\text{bottom}} g \cos \theta \, dt = ...$$

ii) Using work energy theorem (Newton 2 indirectly):

Non-conservative forces do no work, hence mechanical energy is conserved, i.e.

$$\Delta E = \Delta K + \Delta U = 0 \quad \text{or} \quad E_f = E_i$$

$$K_f - K_i + U_f - U_i = 0 \quad \text{or} \quad K_f + U_f = K_i + U_i$$

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 + mg_y - mg_y_i = 0$$

rearrange $\rightarrow v_f = \sqrt{v_i^2 + 2g(y_i - y_f)}$

Conservation of energy

observation: for many forces, $W = W(r)$, useful to define $U = U(r)$.

observation: for all systems yet studied, U_{int} is a state function, i.e. $U_{\text{int}} = U_{\text{int}}(\text{measured variables})$

Hence idea of internal energy. E.g.:

Friction, $-U_{\text{int}}$ = heat produced when work is done against friction.

Air resistance $-U_{\text{int}}$ is sound and heat.

Combustion engines and animals: $+U_{\text{int}}$ comes from chemical energy

$$\Delta K + \Delta U + \Delta U_{\text{int}} = 0$$

is statement of Newton 2 plus definitions of K, U, U_{int}.

The statement that ΔU_{int} is a state function is the first law of thermodynamics. It is a law, i.e falsifiable. More on this in Heat.

Example. Freda ($m = 60 \text{ kg}$) rides pogo stick ($m \ll 60 \text{ kg}$) with spring constant $k = 100 \text{ kN.m}^{-1}$. Neglecting friction, how far does spring compress if jumps are 50 cm high?

![Diagram of a pogo stick](image)

Non-conservative forces do no work, hence mechanical energy is conserved, i.e.

$$E_{\text{bottom}} = E_{\text{top}}$$

$$K_b + U_b = K_t + U_t \quad \left(U = U_{\text{grav}} + U_{\text{spring}} \right)$$

$$\frac{1}{2}mv_{\text{horiz}}^2 + (mg y_b + \frac{1}{2}kx_b^2) \equiv \frac{1}{2}mv_{\text{horiz}}^2 + (mg y_t + \frac{1}{2}kx_t^2)$$

$$mg(y_t - y_b) \equiv \frac{1}{2}kx_b^2$$

$\therefore x_b \equiv \sqrt{\frac{2mg(y_t - y_b)}{k}} \equiv 80 \text{ mm.}$
Example. Slide starts at height h_1. Later there is a hump with height h_2 and (vertical) radius r. What is the minimum value of $h_2 - h_1$ if slider is to become airborne? Neglect friction, air resistance.

Over hump, $a_c = \frac{v^2}{r}$ (down). Airborne if $g < a_c$, i.e. if $v_2^2 > gr$.

No non-conservative forces act so

$$E_2 = E_1$$

$$U_2 + K_2 = U_1 + K_1$$

$$mgy_2 + \frac{1}{2}mv_2^2 = mgy_1 + \frac{1}{2}mv_1^2$$

$$\frac{1}{2}mv_2^2 = mg(y_1 - y_2)$$

$$(y_1 - y_2) = \frac{v_2^2}{2g} > \frac{gr}{2g} = \frac{r}{2}$$

Example Bicycle and rider (80 kg) travelling at 20 m.s$^{-1}$ stop without skidding, $\mu_s = 1.1$. What is minimum stopping distance? How much work done by friction between tire and road? Between brake pad and rim? Wheel rim is ~300 g with specific heat ~ 1 kj.kg$^{-1}$, how hot does it get?

friction \rightarrow deceleration \rightarrow stopping distance

$$|a| = \frac{F_f}{m} \leq \frac{\mu_s N}{m} = \mu_s g$$

$$|a| \leq \mu_s g$$

$$v_f^2 - v_i^2 = 2as \quad \Rightarrow \quad s = \frac{v_f^2 - v_i^2}{2a}$$

$$s \geq \left| \frac{-v_i^2}{2\mu_s g} \right| = 19 \text{ m}$$

Work done by friction between tire and road? No skidding, \therefore no relative motion, \therefore $W = 0$.
Between pad and rim? Here \exists relative motion. All K of bike & rider \rightarrow heat in rim and pad

$$W = \Delta K = K_f - K_i = -16 \text{ kJ}$$

$$Q = mC\Delta T \quad \therefore \Delta T \sim 50 \text{ °C}$$
Example Which way is it easier to drag an object?

Suppose we move at steady speed, \(a = 0 \). Which requires less \(F \)? Which requires less work?

mechanical equilibrium → horizontal \(F \cos \theta = F_f \)

sliding → \(F_f = \mu_k N \)

eliminate \(N \) → \(F \cos \theta = \mu_k (mg - F \sin \theta) \)

\[F = \frac{\mu_k mg}{\cos \theta + \mu_k \sin \theta} \]

when \(\theta = 0 \), \(F' = \mu_k mg \)

\(F < F' \) if \(\cos \theta + \mu_k \sin \theta > 1 \), i.e. if \(\mu_k \) large & \(\theta \) small

Work done = \(Fs \cos \theta = F_f s \)

= \(\mu_k N s = \mu_k s (mg - F \sin \theta) \) decreases with \(\theta \)

Question

How high should \(h \) be so that it can loop the loop?
Example. A hydroelectric dam is 100 m tall. Assuming that the turbines and generators are 100% efficient, and neglecting friction, calculate the flow of water required to produce 10 MW of power. The output pipes have a cross section of 5 m².

Nett effect: ~ stationary water lost from *top* of dam, water appears with speed \(v \) at bottom.

Let flow be \(\frac{dm}{dt} \).

\[
\begin{align*}
dW &= \text{work done by water} \\
\quad &= - \text{Work done on water} = - \text{energy increase of water} \\
\quad &= - \left(\frac{1}{2} \frac{dm}{dt} v^2 - 0 \right) - \left(0 - \frac{dm}{dt} gh \right) = \frac{dm}{dt} \left(gh - \frac{v^2}{2} \right)
\end{align*}
\]

\[
\begin{align*}
\mathcal{P} &= \frac{dW}{dt} = \frac{dm}{dt} \left(gh - \frac{v^2}{2} \right)
\end{align*}
\]

Problem: \(v \) depends on \(\frac{dm}{dt} \)

\[
\begin{align*}
v \cdot dt = A \cdot \frac{dV}{dt} = A \cdot \frac{dm}{dt}
\end{align*}
\]

Density: \(\rho \equiv \frac{\text{mass}}{\text{volume}} = \frac{m}{V} \) so \(m = \rho V \)

\[
\begin{align*}
\frac{dm}{dt} &= \rho \frac{dV}{dt} = \rho Av \\
\mathcal{P} &= \rho Av \left(gh - \frac{v^2}{2} \right)
\end{align*}
\]

\[
\begin{align*}
v^3 - (2gh)v + \frac{2\mathcal{P}}{\rho A} &= 0 \\
\text{can solve cubic, but messy}
\end{align*}
\]

Neglect \(v^3 \) \(\Rightarrow \) \(v = \frac{\mathcal{P}}{gh\rho A} = 2 \text{ m/s} \)

and indeed we see that \(v^3 \ll \text{other terms} *