A CORRECTION TO A HIGHLY ACCURATE VOIGT FUNCTION ALGORITHM

Z. Shipponya W. G. Reada

aJet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca. 91109, U.S.A.

An algorithm for rapidly computing the complex Voigt function was published by Shippony and Read [1]. Its claimed accuracy was 1 part in 10^8. It was brought to our attention by Wells [2] that Shippony and Read [1] was not meeting its claimed accuracy for extremely small but non zero y values. Although true, the fix to the code is so trivial to warrant this note for those who use this algorithm. In the code, there exist in two subroutines, VoigtR1 and VoigtR3 a threshold variable called $\texttt{tiny} = 1.0d-12$. Any value of $10^{-12} > y > 0$ may have have errors exceeding the target accuracy. The parameterization for \texttt{tiny} should have been the minimum precision of the computer (it is machine dependent, for the SGI origin it is $\texttt{tiny} = 2.2d-16$). Fortunately, FORTRAN 90 has a function, $\texttt{epsilon(y)}$ that returns the smallest allowable value therefore setting $\texttt{tiny} = \texttt{epsilon(y)}$ will ensure the algorithm’s accuracy on any platform. We thank R. J. Wells for bringing this error to our attention.

References