School InformationPersonnel

Alex Hamilton

B.Sc. Imperial College, London 1988.
Ph.D. Cambridge, UK 1993.
EPSRC Research Fellow & Research Associate, University of Cambridge, 1993-1999.
ARC Professorial Fellow 2007-2011, School of Physics.
ARC Discovery Outstanding Researcher 2012-14, School of Physics.

UNSW Scientia Professor, School of Physics.



Condensed Matter Physics - Quantum Electronic Devices Group

Research Interests

The continual demand for faster, smaller, and more efficient integrated circuits ("chips") is pushing technology such that future devices will soon approach the scale of large molecules, and quantum, rather than classical physics, will determine device performance.

I study the fundamental electronic properties of state-of-the art nanoscale semiconductor devices, where the device size becomes comparable to the electron's wavelength, so that the electrons behave more as waves than as particles. In these regime devices classical physics breaks down, and a myriad of new quantum effects determine how the device operates. In order to develop these nanoscale devices I am interested in all aspects of semiconductor device nanofabrication, and developing new technologies for fabricating atomically precise electronic devices. In particular our research group is a world leader in the design and fabrication of p-type (hole based) nanostructures, where interaction effects are and spin-orbit coupling are strong. It is interesting that although half of all transitors on an integrated circuit use holes rather than electrons, there is not even a basic theory of the quantum properties of holes in nanostructures!

Research interests include (see our group website for further details):


Before becoming research-only staff, I taught:

Conference and Workshop Organisation

I enjoy organising focussed workshops in condensed matter physics to help overcome the physical isolation that researchers in Australia can face. These free workshops are specifically aimed at Honours, PhD and junior research scientists, and bring leading international scientists to Australia for informal workshop style meetings:

Selected Publications

A total of over 160 research papers have been published, including 13 Physical Review Letters, 24 Applied Physics Letters, and 13 Phys. Rev. B. Rapid Communications. These have been cited over 2400 times.

Quantum dots:

The Impact of Small-Angle Scattering on Ballistic Transport in Quantum Dots,
A. M. See, I. Pilgrim, B. C. Scannell, R. D. Montgomery, O. Klochan, A. M. Burke, M. Aagesen, P. E. Lindelof, I. Farrer, D. A. Ritchie, R. P. Taylor, A. R. Hamilton, and A. P. Micolich, Physical Review Letters 108, 196807 (2012).

Observation of the Kondo Effect in a Spin-3/2 Hole Quantum Dot,
O. Klochan, A. P. Micolich, A. R. Hamilton, K. Trunov, D. Reuter, and A. D. Wieck, Physical Review Letters 107, 076805 (2011).

Quantum wires:

Using a tunable quantum wire to measure the large out-of-plane spin splitting of quasi two-dimensional holes in a GaAs nanostructure,
A. Srinivasan, L. A. Yeoh, O. Klochan, T. P. Martin, J. C. H. Chen, A. P. Micolich, A. R. Hamilton, D. Reuter and A. D. Wieck,
Nano Letters 13, 148 (2013).

Compressibility Measurements of Quasi-One-Dimensional Quantum Wires,
L.W. Smith, A. R. Hamilton, K. J. Thomas, M. Pepper, I. Farrer, J. P. Griffiths, G. A. C. Jones, and D. A. Ritchie,
Physical Review Letters 107, 126801 (2011).

Resistively Detected Nuclear Magnetic Resonance in n- and p-Type GaAs Quantum Point Contacts,
Z. K. Keane, M. C. Godfrey, J. C. H. Chen, S. Fricke, O. Klochan, A. M. Burke, A. P. Micolich, H. E. Beere, D. A. Ritchie, K. V. Trunov, D. Reuter, A. D. Wieck, and A. R. Hamilton,
Nano Letters 11, 3147-3150 (2011). .

0.7 Structure and zero bias anomaly in ballistic hole quantum wires
R. Danneau, O.Klochan, W. R. Clarke, L. H. Ho, A. P. Micolich, M. Y. Simmons, A. R. Hamilton, M. Pepper and D. A. Ritchie,
Physical Review Letters 100, 016403 (2008).

Zeeman splitting in ballistic hole quantum wires
R. Danneau, O. Klochan, W. R. Clarke, L.H. Ho, A. P. Micolich,M. Y. Simmons, A. R. Hamilton, M. Pepper, D. A. Ritchie and U. Zuelicke,
Physical Review Letters 97, 026403 (2006).

Back-gated split-gate transistor: A one dimensional ballistic channel with variable Fermi energy,
A.R. Hamilton, J.E.F. Frost, C.G. Smith, M.J. Kelly, et al,
Appl. Phys. Lett., 60, p. 2782 (1992).

Two-dimensional physics and forbidden metal-insulator transition:

High Temperature Superfluidity in Double Bilayer Graphene,
A. Perali, D. Neilson, and A.R. Hamilton,
Physical Review Letters 110, 146803 (2013).

Effect of screening long-range Coulomb interactions on the metallic behavior in two-dimensional hole systems
L.H. Ho, W.R. Clarke, A.P. Micolich, R. Danneau, O. Klochan, M.Y. Simmons, A.R. Hamilton, D.A. Ritchie and M. Pepper,
Physical Review B Rapid Communications 77, 201402(R) (2008).

Impact of long- and short-range disorder on the metallic behaviour of two-dimensional systems
W.R. Clarke, C.E. Yasin, A.R. Hamilton, A.P. Micolich, M.Y. Simmons, K. Muraki, Y. Hirayama, M. Pepper and D.A. Ritchie,
Nature Physics 4, 55-59 (2007).

Evolution of the bilayer n = 1 quantum Hall state under charge imbalance,
W. R. Clarke, A. P. Micolich, A. R. Hamilton, M. Y. Simmons, C. B. Hanna, J. R. Rodriguez, M. Pepper, and D. A. Ritchie,
Physical Review B Rapid Communications 71, 081304 (2005).

Metallic behaviour in dilute two-dimensional hole systems,
A.R. Hamilton, M.Y. Simmons, M. Pepper, E.H. Linfield and D.A. Ritchie,
Phys. Rev. Lett. 87, 126802 (2001).

Weak localisation, hole-hole interactions, and the "metal"-insulator transition in two dimensions,
M.Y. Simmons, A.R. Hamilton, M. Pepper, and D.A. Ritchie,
Phys. Rev. Lett. 84, 2489 (2000).

Re-entrant insulator-metal-insulator transition at B=0 in a two dimensional hole gas,
A.R. Hamilton, M.Y. Simmons, M. Pepper, E.H. Linfield, P.D. Rose, and D.A. Ritchie,
Phys. Rev. Lett. 82, 1542 (1999).

Metal-insulator transition at B=0 in a dilute two dimensional GaAs-AlGaAs hole gas,
M.Y. Simmons, A.R. Hamilton, M. Pepper, E.H. Linfield, P.D. Rose, D.A. Ritchie, T.G. Griffiths and A.K. Savchenko,
Phys. Rev. Lett. 80, 1292 (1998).

Atomic scale devices

Stacking of 2D electron gases in Ge probed at the atomic-level and its correlation to low temperature magnetotransport,
G. Scappucci, W. M. Klesse, A. R. Hamilton, G. Capellini, D. L. Jaeger, M. R. Bischof, R. F. Reidy, B. P. Gorman, and M. Y. Simmons,
Nano Letters 12, 4953 (2012)

Ohmic conduction of sub-10 nm P-doped silicon nanowires at cryogenic temperatures,
F. J. Rueß, A. P. Micolich, W. Pok, K. E. J. Goh, A. R. Hamilton, and M. Y. Simmons,
Applied Physics Letters 92, 052101 (2008)

Realization of Atomically Controlled Dopant Devices in Silicon,
F. J. Rueß, W. Pok, T.C.G. Reusch, M.J. Butcher, K.E.J. Goh, L. Oberbeck, G. Scappucci, A.R. Hamilton, and M.Y. Simmons,
Small 3, 563 (2007).

Fabrication of quantum wires using scanning probe microscopy,
Frank J. Rueß, L.Oberbeck, M.Y. Simmons, K.E.J. Goh, A.R. Hamilton, T. Hallam, N.J. Curson and R.G. Clark,
Nano letters 4, 1969 (2004).

Quantum computing and quantum measurement:

Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures,
D. R. McCamey, H. Huebl, M. S. Brandt, W. D. Hutchison, J. C. McCallum, R. G. Clark and A. R. Hamilton,
Applied Physics Letters, 89 (18), 182115 (2006).

Electric-field-induced charge noise in doped silicon: Ionization of phosphorus donors,
A. J. Ferguson, V. C. Chan, A. R. Hamilton, and R. G. Clark,
Applied Physics Letters 88 162117 (2006).

Coherent electronic transfer in quantum dot systems using adiabatic passage,
A. D. Greentree, J. H. Cole, A. R. Hamilton, L. C. L. Hollenberg,
Physical Review B 70, 235317 (2004).

Development and operation of the twin radio frequency single electron transistor for solid state qubit readout,
T.M. Buehler, D.J. Reilly, R.P. Starrett, N.A. Court, A.R. Hamilton, A.S. Dzurak, and R.G. Clark,
Journal of Applied Physics 96, 4508 (2004).

Correlated charge detection for read-out of a solid state quantum computer,
T. M. Buehler, D. J. Reilly, R. Brenner, A. R. Hamilton, A. S. Dzurak, R. G. Clark,
Applied Physics Letters 82, 577 (2003).

Contact Details 

Mail Address

School of Physics
The University of New South Wales

Email Address

Phone Number

+61 2 9385 5736

Facsimile Number

+61 2 9385 6060

Further Information