, C/lr?\/f/[ Q’L.DOC

SECOND HARMONIC GENERATION IN VIOLINS
Summary
Second harmonic generation in violins 1is not augmented
significantly by any change in the string tension during the
periodic traverse of the kink around its parabolic circuit. A
calculation suggests the size of such an effect is insignificant,

and therefore supports a 1937 experimental finding.

Introduction

This paper is written in response to statements made at a V.S.A.
Makers Forum, Campbell(1992), that the second harmonic or "octave
effect which for the modern fiddle is 50 percent of the total
volume of sound" and gives the "loudest component of the output".
This 1idea arises from the fact that the tension in a vibrating
string cycles at twice the freguency of the fundamental and the
effect of this should be in addition to that of the kink as it
deflects the bridge. An argument was put forward that the fore
and aft bending of the bridge as distinct from the rocking motion
caused an additional deflection of the top plate. The purpose of
this paper 1is to explore that idea and to show that the octave
effect is too small to be audible. First, gome general features
of string behaviour will be outlined, principally those
associated with in-plane and out-of-plane motion, and second, the
order of magnitude of deflections to be expected at the bridge

and top plate.

Minnaert and Viam (1237) studied the motions of +the violin
bridge. They found in-plane rocking and translational motioms and

out-of-plane flexing and torsional motions. The octave effect



would involve the out-of-plane flexural motion of the bridge.
Their conclusion is worth guoting.

"The general result of our investigation is, that the bridge
executes different complicated movements, as well in its own
plane as perpendicularly to it. These correspond to the
proper vibrations of several vibrating systems, consisting
of the whole of the strings, the tailpiece, the belly or the
bridge itself, in some respects strongly coupled to each
other. Thanks top the cuts in the bridge, only the vibration

in its plane is transmitted to the feet, and by them to the
belly of the instrument.”

This paper presents an argument in support of this conclusion in
that if any motion was transmitted to the bridge feet 1t would be
so small as to have no noticeable effect. A calculation of the
transverse force at the string notch due to the change in string

tension is made and compared with the force due to the Helmholz

motion. The restraining effect of the other strings as well as
the effect of resonances has not been taken into account. Before
dealing with the variation in string tension, a word about the

rocking or in-plane motion of the bridge might be in order to
demonstrate what the string is doing. The following treatment is

based on the Helmholtz description of string behaviour.

Idealised String Behaviour

This description of string behaviour is related to the Helmholtz
(1877 p.384) explanation of bowed string action in which the
ordinate of the kink moves back and forth from nut to bridge at
constant velocity. The in-plane deflection of the bridge 1is
governed by the force exerted at the top of it as the kink in the
string approaches and immediately departs. The maximum value of
this force depends on the amplitude of the string vibration

(which in turn depends on the bowing position and bow velocity).



Figure 1 shows diagrammatically the various parameters associated
with the string motion. The initial deflection and force on the
bridge caused by the string as the bow is applied have been
ignored. During the "steady state" motion of the string the kink
traces out the segments of two parabolas in its excursion round
the circuit between bridge and nut. The string may be likened to

a whip cracking when it reaches either the bridge or the nut.

The parabolic envelope that the kink traces out in its journey
from nut to bridge can be expressed in the form (see figure 2 and
the appendix):

y = 4Y(1 — X/L)IX/L et iai i ii e e e (1)
Y has the value ve/(8Bf). The terms used are defined and the
equations are developed in the appendix. The maximum increase in
string length, dLma., for the bowing conditions specified, when
the kink is at L/2 is:

OLma:x = (1/72L)(ve/(4Bf))= ..o (2)
and the corresponding increase in tension, dTmaxs 15 given by:

ATmax = (SL/2L) (ve/(4Bf))= ..., e aan(3)
where S_ is the longitudinal string stiffness which is defined in
the next paragraph. These equations are used in the numerical

examples below.

When the string is deflected by the bow its length is increased,
raising the string tension. This increase in string tension will
depend on the elastic modulus of the string material. For gut and
nylon cored strings this will be the unrelaxed modulus since they

are "standard anelastic solids". For metal cored strings Young's



Modulus can be used without as much error as would be incurred
if used with the other materials. One can express the increase 1in
string tension in terms of string stiffness, S. = E.a/L, where E.

is the unrelaxed modulus (or Young s Modulus), a is the string

cross sectional area, and L is the string length from bridge to
nut. The increase in string tension is dT = S.dbL where dbL is the
increase in string length produced by the deflection. This

increase in string tension will increase the down bearing of the
bridge on the top plate by dD = 2dT cos(8/2) where B8 1is the
obtuse angle made by the string as it passes over the bridge. It
is assumed that the line of action of the down—-bearing halves
this angle and passes through the bridge. The extent of the
deflection of the top plate will depend on its effective

stiffness.

Determination of String Elastic Moduli and Stiffness

The relaxed and unrelaxed moduli were determined for a gut D-
string (dia. 0.82 mm). A value for the relaxed modulus was found
to be 1.68x10% N/m=. This was less than the value guoted by Bell
and Firth (1986) who did not distinguish between the two moduli
for a standard anelastic material. The unrelaxed modulus was
determined starting with a static tension of 3.5 kg wt, a value
near the tuning pitch of gut strings, and was found to be 4.2x10%

N/m=. This value was used in subsequent calculations.

The stiffness of the two parts of the string using the value
determined for the unrelaxed modulus is S. = 6.7x10% N/m for the
330 mm length between the nut and the bridge, and S, = 40.3x%x107

N/m for the 55 mm length between the bridge and the tailpiece.



The calculation of interest is the amount of flexing expected at

the top of the bridge.

Rocking (in-plane) Motion of the Bridge

It is of interest to calculate the effect of the increase in
tension on the magnitude of the rocking motion responsible for
the sound production in the violin for comparison with the
flexural motion thought to contribute to the "octave effect'". We
therefore begin by estimating the in-plane transverse force due
to the kink and that due to the increase in tension. From these
the deflections at the bass foot of the bridge can be found. This
will depend on two factors; the transverse force exerted at the
top of the bridge by the vibrating string and the resistance
exerted at the bridge feet. The force exerted by the string will
be proportional to the bowing velocity, ve (in this paper taken
at 1 m/s), and inversely proportional to the relative distance of
the bow from the bridge, P (here taken at 0.1). The resistance
present at the bridge feet will depend on the effective stiffness
of the body. If we assume the bridge rocks about the treble

bridge foot we need only consider motion at the bass foot.

Following Cremer (1984) equation 2.2, namely F, = T.(dy/dx),
where F, is the transverse force, T, is the string tension
(Cremer wuses F.) and dy/dx is the slope of the parabola at the
bridge, we can obtain an estimate of the transverse force for the
bowing parameters used here. Using equation (1) taking T.. = 25 N,
(a value calculated for the gut string used here, see below) we

can determine VY to a first approximatiom since the additional



tension induced by bowing is less than one tenth of this. This
can be used to calculate y for a particular x on this parabola.
Thus from the slope at x = 0, dy/dx = 4Y/L gives the transverse
force F, = 1.26 N. This can be translated to the bass foot of the
bridge and becomes 1.59 N on applying the bridge lever ratio. The

corresponding deflection at the bass foot is 2.7x10-% m (2.7 pm).

We can compare these estimates with two from the literature, the
first for the transverse force exerted by the string at the top
of the bridge. Using Cremer (1984) equation 3.22 (corrected, see
note with reference) viz: F(0) = (TRm')lfzvb/p where F(0) is the
peak value of the transverse force on the bridge top for the
string tension, T.; m' is the mass per unit length of the string.
The qut D string used as an example in this work, allows us to
calculate a value for the tension from T, = m'(2Lf)= giving 25 N.

The Jjump in force is twice F(O) at reversal. (T.um” )72 is the

string wave impedance, Z, which has been determined by a number
of workers. Putting values for T. = 25 N and m’ = 0.64%x10-= kg/m
with the bowing conditions given in the appendix (vg/B = 10) we

get a value of 0.9 N for the transverse force F(0). This
transverse force is at the top of the bridge in the bowing
direction. When resolved in the "rocking" direction (see figure

3) the lever action of the bridge increases it to 1.1 N.

Another estimate can be made using the results obtained by Meinel
(1937). He found an amplitude of 28 pm at the bass foot of the
bridge for a body mode at 488 Hz. The effective stiffness for the
Bl+ body mode at 540 Hz in another violin, which appears to be

equivalent to the above mode in Meinel's paper, has been



determined by a method outlined by Schelleng (1963) to be 0.8x10®
N/m (unpublished work). Meinel’'s top plate thickness was about
2.5 mm compared with about 3 mm in this work. If we take an
effective stiffness for this body mode in Meinel’'s paper of one
tenth of that above we get a transverse force of 1.80 N at the

bridge top.

The contribution made by the increase in string tension to the
transverse force can be calculated in the following way. The
increase 1in tension resolved in the plane of the bridge is given
by:
dT+ = dT sin ¢ (see figure 2)

Of interest 1is the relative magnitude of dT+, the transverse
contribution of the increase in string tension, compared with
the transverse force, F, = T,. dy/dx, due to the motion of the
Helmholtz kink. This can be expressed as a ratioc as follows,
taking note that dy/dx = tan ¢ ¥ sin ¢ ¥ ¢ = 4yY/L.

dT+/Fy = (dTmawx sin ¢)/T.. dy/dx

I

OTmamsc/ Toceaoeaenosannasansanssnnenssansas (4)

Putting in the values for the parameters given earlier, we find a
ratio of 0.028. Compared with the transverse force due to the
Helmholtz kink, the increase in transverse force due to an
increase 1in string tension is negligible. The maximum of the
latter is not in phase with the maximum of the Helmholtz

transverse force but leads (or lags) by a gquarter period. (figure

1).

The down bearing, D, due to the static string tension, T., can be



found from the equation:

D

2T €CO5 B/2 i iiinieesnarnnnannns B =)
where B8 (taken as 160<) is the angle made by the string as it
passes over the bridge, and assuming the bisector lies within the
substance of the bridge. The extra down bearing due to the
increase in string tension is obtained using equation (3) giving:
dD = 5 /L(ve/(4Bf))® cos B8/2 ............ {6)
Putting in the appropriate numbers we get for dD the value of

0.243 N.

Flexural (out-of-plane) Bridge Motion

In addition to the above effect, the increase in string tension

also extends the length of the string, 1, between the bridge and
the tailpiece, nominally 55 mm. The stiffness of this string
segment S+ = E.a/l and the extension, dl, will be dl = dT/5+.

This will allow the bridge top to flex towards the fingerboard.

As the kink moves around the circuit, the extension of this
segment follows the variation in string tension, dT, in a manner
depicted in figure 1. The maximum value of this change in string

tension 1lags that of the transverse bridge force by a quarter
period. The string length, L, changes in a non linear way as the
kink travels round the circuit. The resulting change in string
tension with time assumes a parabolic form which 1is concave

downwards, as shown 1in figure 1.

The Size of the "Octave Effect”
If we take some representative values of the string properties,
an estimate can be made of the size of the effect. With the above

limitations imposed and considering a "static" situation minimum




values only will be expected. However their order of magnitude

may be helpful in deciding the importance of the issue.

The bowing conditions used correspond to a string amplitude of
4,2 mm calculated from an appropriate expression for Y . The
corresponding extension dLma. from (A4) is 0.105 mm (0.00032 or
0.032% of the string length). The increase in string tension we
are seeking then is 0.705 N (about 0.02 or 2.0%4 of string
tension) from dT = S.dL, and can calculate the extension, dl, in
the length of string behind the bridge due to dTma.- It turns out

to be 0.0175 mm (17.5 pm).

The possibility of the flexural motion of the bridge, assumed
rigid, caused by a force on the top is the lever action if one
edge (here assumed to be the back edge) of the bridge feet is
regarded as a fulcrum. Taking the bridge height as 34 mm and the
thickness at the feet as 4 mm the deflection of 0.0175 mm at the
top becomes 0.0021 mm (2.1 pm) at the front edge of the feet. How
the bridge would ‘"rock" in this flexural mode 1s open to
speculation; whether about the back or front edge or about the

line of action of the downbearing.

As a force transmission this "lever'" action of the bridge using
the above dimensions and assumptions, would translate a force
of 0.705 N normal to the bridge top of 0.705 x 34/4 = 6.0 N at

the front edge of the bridge feet.

The increase in string tension of 0.705 N if transmitted as an

increase in downbearing translates to a value of 0.25 N using the




equation dD = 2dT cos(8/2). If this is applied to the top plate
at the Bl+ body mode (540 Hz) of effective stiffness 0.8x10® N/m,
the deflection would be 0.31x10"* m i.e. 0.31 pm. If the Bl- body
mode (470 Hz) of effective stiffness 0.6x10= N/m is used, the
deflection expected would be 0.25/0.46E6 = 0.42x10"* m i.e. 0.42
pm. These numbers while probably invalid suggest that any "Octave

effect" would be quite small.

This is the most extreme case in favour of second harmonic
enhancement. As my referee points out, I have omitted the
possible bending of the bridge. Minnaert and Vlam (1937) found
that bending took place above the waist. The degree of bending

would depend on the stiffness of the bridge.

Discussion

Typical parameters for a gut string e.g. playing open D, lead to
an estimate of the amplitude of flexural motion at the top of the
bridge of 0.0175 mm (17.5 pm). Translated to the bridge feet
rocking about the rear edge, this amplitude becomes 0.0021 mm
(2.1 pm). In terms of the increase in string tension of 0.705 N
expressed as an increase in downbearing, results in a deflection
of the top plate at the bass foot of the bridge of 0.00042 mm

(0.42 pm).

This is to be compared with the effect of the transverse force at
the top of the bridge due to the motion of the kink. For the
example used here, the transverse force was calculated to be 1.26
N (using an equation due to Cremer) and which appears as a

downbearing of 1.59 N at the bass foot of the bridge. Another
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estimate based on Cremer gives a lower value. The transverse
force due to the extra tension is 0.035 N from equation (4). This
is small compared to the transverse force due to the Helmholtz

kink .

If these considerations are valid the effect would be too small
and 1in any event, the conclusion of Minnaert and Vlam still
stands and any out-of-plane motion of the bridge 1is '"filtered
out" by the cuts in the sides of the bridge. With respect to the
opening statements that appear in the introduction regarding
second harmonic enhancement, on examining a number of harmonic
analyses of bowed notes including both open and stopped strings,

no prominent and consistent second harmonic enhancement that

would support those statements has been noticed (unpublished
work). Recalling the limitation set out in the introduction that
a bridge with only one string was being considered, the extra

restraining effect of three additional strings behind the bridge
should reduce the deflection due to the vibrating string to an

even smaller amount.

J.E.McLennan
5 Joanna Close (off Bula Street)
Charlestown, N.S.W. 2290

Australia
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Appendix A

The parabola traced out by the kink as it travels from the nut to
the bridge during half its excursion (periodic cycle) is given by
(see Figure 2):

4Y(1 - x/L)x/L ..... e e ra s s s e {Al)

1l

4

y Y at x = L/2

This can be written as

Y = AY/L=(L = X)X ceeeeeuroasasoennasnssaa(P2)
= AL - x)x where A = 4Y/L=. Cremer (1984)
equations 3.17 and 3.18, allow us to write Y = V/8B8f where V is

the string velocity difference between sticking and slipping and
f 1is the frequency. Substituting V = ve/B where ve is the bow
velocity and P = x/L is the bow position as a fraction of the
string length, we can write A in the form vb/(ZBsz). Using c =

2Lf, A = Vb/(pLC)-

The increase in string tension will be determined by the increase
in length and the elastic modulus of the string material. The
increase in length 1is the sum of the two strimng segments on
either side of the kink less the original string 1length. This
assumes the initial static deflection of the string by the bow

can be neglected.

For small amplitudes we can use the binomial expansion of

12




Pythagoras’ Theorem to find the length of the segments.

1. = x + y=/2%; = = (L - x) + y=/(2(L - %))
Then o + 1z = LE1 + ¥y2/(2%(L = X))] ceuereeneneena(A3)
Thus the increase in length, dL = Ly=®/(2x(L - x)). The maximum
increase occurrs at x = L/2 and is dlLnmax = 2Y®/L. Substituting

for Y = L=A/4 where A = vo/(2BL=f) we get:
Olmax = (2L) 73 Ive/(4Bf) 1=, it ittt i s nn e anens (A4)

The increase in tension corresponding to this increase in length
can be determined from the stiffness of the active part of the
string, giving for dTmasx:

AT maw = (SL/2L)[ve/(4Bf)1= ........ e {AS)
This maximum increase in tension will be felt at the bridge and
directed at an angle, ¢, which is the angle made by the string
segment with the undeflected position of the string in this case.
The direction of this tension of interest in the present argument
is that normal to the plane of the bridge (see Figure 2), namely

dTw = dT cos ¢

We can if we wish calculate ¢ for the position of the kink at x =
L/2 and therefore dTma., however cos ¢ can be taken as equal to
one:

Cos ¢p = x/1. = 1/(1 + y=/2x=)

From (A2) YE/x= = A=(L - x)=

1/7(1

+

cos ¢ AZ/2(L = X)=) i neeses (RO)

= 1/01 + 1/2(ve/(2BL=F) )= (L= - 2xL + x=)]

At x = L/2 cos ¢ = 1/[1 + (1/8)(va/2PLT)=]

1 - (1/8)(ve/(2BLf))=
The force increase dTn will be felt by the string length between

the bridge and the tailpiece and will result in an extension dl

13




that will be equal to the maximum flexural displacement of the
top edge of the bridge. The displacement will be from a starting
position and back. The extent of this movement can be calculated
as:

dl = dTmaex/S1 coOs ¢
where S, 1is the stiffness of that part of the string between the
bridge and the tailpiece. Then

dl = (dTmax/S2)[1/(1 + 1/B(ve/(2BLf))=)] .....(A7)
Substituting for dTnha.. above

dl = (SL/LS:)[(ve/(4Bf))=]1[1/[1 + 1/8(ve/(2BLf))=]]
Using values for the gut string quoted in this paper, namely S. =
6.7%x10% N/m, S, = 40.3x10¥ N/m and vo = 1 m/s, B = 0.1, L = 0.33

m, f = 300 Hz for Da, we get dlimax = 35.0x10"* m, i.e. 335 um.

From cos ¢ {at x 0) = 1/[1 + (1/2)(ve/{(2BLf))=] we can
calculate for chosen bowing conditions, the angle ? that the
string makes with the normal to the plane of the bridge (ignoring
the initial string offset). For the conditions above for the gut
D string, ¢ = 2.89°. The value of ¢ calculated when dT = dTmaw,

at x = L/2, 1is 1.45=., This angle is dependent on the value of B

and becomes larger as ﬂ decreases (or v,/p increases).
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Appendix B

In the event of more than one Helmholtz kink, the increase in
length would be greater than that determined above. In the limit
with an infinite number of kinks, the string length would be that
of the parabolic arc. The above limit is an impossible physical

situation although more than one kink is possible.

The length of the parabolic arc can be found from:

1l

S SL [1 + (dy/dx)=]12"% dxX w.vewweenn ... (B1)
9]

AL — x)x

where y
Solving the expression (Bl) by putting it in the standard form
containing (x® + a®)*7® and substituting A = ve/(BLC) we arrive

at:

n
i

(L/2)L(AL)= + 1]2-=

+ (1/4A)1og[2(AL)= +1 + 2ALL(AL)= + 1]*7=] ....(B2)

(L/2Bc)[ve= + (Pc)=]r7=

+ (BLc/4ve)log[2ve=/(Bc)= + 1 + 2ve/(Be)®[ve™ + (Pc)=1+7=] ..(B3)
The increase in length over the undeflected string can be found
by subracting L. The wave velocity c can be replaced by 2Lf as
noted above. For the bowing conditions used in this paper, the
length of the parabolic arc is 0.035 mm longer than the maximum
length of the string with one Helmholz kink. This is 0.01 % of

the original string length.
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String nomenclature

T+ T (String)
¢
> T Gut D string

dia. 0.82 mm

Bridge m’ 0.64 g/m
D 1.22 g/cc
E. 4.2E9 N/m=
S_ 6.7E3 N/m

Figure 2 String geometry
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Figure 3 Bridge geometry
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