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The results of experiments on the threshold behavior and large-amplitude oscillation of
‘‘outward-swinging door’’ vibrating flap valves in an air environment are reported and compared
with the predictions of a simple nonlinear theory that parametrizes aerodynamic effects by means of
a simple damping coefficient together with a contraction coefficient for the flow. The agreement is
acceptably good for the threshold blowing pressure for valve oscillation, the large-signal vibration
amplitude, the pressure jump in the transition from threshold to large-signal behavior, and the
variation in vibration frequency, all as functions of reservoir volume. The calculated pressure
waveform in the reservoir has the observed phase and magnitude but fails to reproduce finer details.
It is concluded that the simple theory provides an adequate account of the behavior of such valves.
There are just two parameters in the theory, describing jet contraction and aerodynamic damping,
respectively. Since these may depend significantly upon the detailed geometry, valves with different
shapes may behave in quantitatively different ways. ©2000 Acoustical Society of America.
@S0001-4966~00!04107-2#
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INTRODUCTION

Pressure-controlled vibrating valves are important
many contexts. They provide the sound-generating mec
nism for the vocal utterances of birds, humans, and m
other animals, and also for musical instruments of the br
and reed–woodwind families.

The geometric and dynamic complexity of many
these systems is great, since the vibrating element has m
possible modes of deformation, but it has proved helpfu
consider three simplified situations in which the motion
the valve can be described by a single displacement pa
eterx measuring the valve opening. We can then specify
behavior of the valve by a two-element parameter (s1 ,s2)
in which s1511 if a steady positive pressure applied to t
upstream or inlet port of the valve tends to increase the va
openingx, and s1521 if this pressure tends to close th
valve. The second parameters2 is defined similarly for a
pressure applied to the downstream or exit port of the va
For convenience, the configuration of a valve will be d
scribed simply by (1,2), for example, rather than giving
the complete symbol (11,21).

We can recognize three distinct types of valves with
this simple classification. Valves of type (2,1), which can
be pictured as inward-swinging doors or doors that are blo
closed, are found in the reed mechanisms of woodwind
struments such as clarinets or oboes. Valves of type1,
2) are like outward-swinging doors or doors that are blo
open, and describe the motion of a trumpet player’s lips o
at least part of the range of the instrument. Valves of c
figuration (1,1) are like sliding doors or doors that ar
blown sideways, and represent another possible motion
trumpet player’s lips. This ambiguity in the case of bra

a!Permanent address: Research School of Physical Sciences and Eng
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instrument playing arises because description of the mo
of the soft tissue of the lip really requires at least two d
placement parameters,1 and ideally a continuum description2

The same is true of human vocal folds and the syring
membranes of birds, both of which could be approxima
by (1,2) or (1,1) but are really more complex tha
this.3,4

The remaining valve type, described by (2,2), does
not appear to occur naturally or in any musical instrumen
or to have any practical utility. This is perhaps because of
tendency to simply blow closed for any applied pressure

There have been many studies of the behavior of (2,
1) valves in woodwind instruments, particularly clarine
following early work by Backus,5 but here the air column o
the instrument is a dominant influence. A more general st
of the acoustics of valves of both (2,1) and (1,2) types
was carried out by Fletcheret al.,6,7 while lip valves in brass
instruments have been investigated by Elliott and Bowsh8

Yoshikawa,9 Copley and Strong,10 and others. The behavio
of free reeds, as in harmoniums, has been studied by
Hilaire et al.,11 and more recently by Johnston,12 Koopman,
Cottinghamet al.,13,14and particularly by Bahnsonet al.15 A
summary of most of this work has been given by Fletch
and Rossing.16

The threshold for self-excited oscillation of the thre
simple valve classes in the absence of an attached reso
has been examined theoretically in another paper by on
the present authors.17 In that paper it is shown that, if the
acoustic impedance presented to the inlet of the valve isZ1

5R11 jX1 and that presented to the outlet isZ25R2

1 jX2 , then a necessary condition for the initiation of se
oscillation is that

s1X12s2X2,0. ~1!

This condition ~1! is, however, not sufficient. In addition
there is a condition on the blowing pressure~or, more gen-

eer-
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erally, the pressure difference across the valve! that depends
in detail upon valve geometry and internal damping.

In the case of valves of configuration (1,2), which are
considered in the present paper, the requirementX11X2

,0 can be achieved by supplying the valve from a reserv
of fixed volumeV, in which caseX152rc2/Vv ~wherer is
the density of air,c the speed of sound, andv the frequency
of the oscillation!, and allowing the valve to exhaust to th
open air so thatX250. It is then found17 that there is a
preferred volume for the supply reservoir at which se
oscillation can be maintained at low blowing pressure;
larger or smaller reservoir volumes a greater threshold bl
ing pressure is required. The first part of our experimen
study investigates these predictions.

The small oscillations of a valve are, however, genera
unstable, and tend to grow rapidly to large amplitude. T
transition, and the limiting state achieved by the larg
amplitude oscillations, form another major part of the stu
In contrast to the threshold determination, which can be
scribed by linearizing the equations of flow and motion,17 a
description of this large-amplitude behavior necessarily
volves proper treatment of the many nonlinearities involv

I. BACKGROUND THEORY

The theoretical background that the experiments are
signed to check has been given before.17 We repeat here only
its elements, and give details of a few refinements require
bring its assumptions closer to the realities of the exp
ment. The valve flap is taken to be a flexing plate of lengthL,
width W, and effective massm, clamped across one end.
the original theory, air was assumed to issue through
valve only across its tip, where the height of the opening
x(t). To bring this treatment closer to the realities of expe
ment, we must allow for an additional escape of air throu
the opening of average widtha(x) along the sides of the
valve, and through clearance gaps of widthb between the
valve tongue and the base plate. The total exit area of
valve is thus approximately

F~x!5W@x21b2#1/212L@a~x!21b2#1/2. ~2!

As already discussed, the valve is assumed to be
from a reservoir of volumeV, which is supplied with a
steady volume flowU0 from a high impedance source, an
to exhaust to free air so that the downstream impedanc
zero. The volume flowU(t) through the valve is given by
Bernoulli’s equation, modified by a flow-contraction coef
cientC, often writtenCc in the literature, which has the valu
C50.61 for flow through a sharp-edged slit.18,19 The pres-
sure must also be supplemented by a small term to repre
the inertia of the air in the channel of lengthd at the tip of
the flap. The resulting equation for the pressurep(t) in the
reservoir is then

p5
rU2

2C2F~x!2
1

]

]t F rUd

CF~x!G , ~3!

wherer is the density of air. While the openingx is a linear
variable for small oscillations of the valve tongue, it has
more complex form when the valve tongue enters the a
401 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000
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ture of the backing plate or ultimately protrudes through
rear face. This is easily taken into account when the eq
tions are solved numerically for large-amplitude oscillation

The vibration of the valve flap is that of a simple can
lever, assumed to have natural frequencyv0 and quality fac-
tor Q, so that, in the absence of air flow, its damping facto
k5v0/2Q. This damping is provided largely by viscou
losses in the surrounding air and, in some of our exp
ments, by added mechanical damping material near the
of the valve flap. As shown in the Appendix, the equation
motion of the flap, expressed in terms of its tip openingx, is

d2x

dt2
12k

dx

dt
1v0

2~x2x0!5
1.5WLp

m
, ~4!

wherex0 is the static opening of the valve flap with no a
plied pressure andm is the effective moving mass of th
valve flap, as derived in the Appendix. For the experimen
arrangement used, the valve tongue is initially flat and
raised a distancex0 above the base plate. It then follows,
also shown in the Appendix, that

a~x!'0.6x010.4x. ~5!

In Eq. ~4! we might expect the damping coefficientk to
be a constant, determined by the combination of inter
losses in the valve flap material and viscous damping in
surrounding air. The value ofk should thus be determinabl
from the quality factorQ of the free oscillation damping o
the valve flap by the relationk5v0/2Q. Schlieren images of
the oscillating valve, to be reported elsewhere, show ho
ever that a vortex develops downstream during the clos
part of the valve cycle, and it would be surprising if this d
not contribute damping to the mechanical oscillation of t
valve. To allow for this possibility, we introduce an add
tional damping proportional to the change in momentum fl
caused by the motion of the valve flap. Since the chang
flow direction is presumably proportional to (1/v)dx/dt,
wherev is the air jet velocity as determined by Bernoulli
principle, it is a reasonable assumption that the extra da
ing is proportional torvx0 dx/dt per unit vibrating length of
edge of the valve flap. We can then write

k5
v0

2Q
1b

rv~W10.8L !x0

m
, ~6!

whereb is a numerical coefficient which we expect to b
approximately unity. In the calculations to follow, it is a
sumed thatb51, and the resulting aerodynamic damping
then small enough that its precise value is not important

A third and final equation relates the pressure in
reservoir to the steady inflowU0 , the outflowU(t) through
the valve, and the change in reservoir volume caused by
valve vibration. This leads to

dp

dt
5

rc2

V S U02U20.4WL
dx

dt D . ~7!

The quantity 0.4WLx8 is approximately the volume dis
placed by a cantilever strip of widthW and lengthL when its
tip is displaced from equilibrium by an amountx8.
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A. Small-signal approximation

A simpler form of these three equations, linearized
the case of small oscillations,x!x0 , by writing U, x, andp

in the form U5U01Ũ sinvt etc., formed the basis of th
earlier analysis of oscillation threshold,17 though in the ex-
amples computed there the flow-contraction effect, the fl
inertia in the valve gap, the contribution of valve displac
ment to reservoir pressure, the flow through the sides of
valve, and the additional aerodynamic damping, were
omitted. For the particular values of the physical parame
of the valve used in the present experiment, in which b
blowing pressure and frequency are rather low, it turns
that the contributions of flow inertia, and to a large exte
aerodynamic damping, can indeed be neglected, but
flow and the flow-contraction correction must both be tak
into account.

In the present paper, linearized versions of the full eq
tions are used for threshold calculations, and the comp
equations are solved numerically to predict the lar
amplitude behavior. The linearized threshold equations
derived in the same way as before.17 Neglecting the air-
inertia term, the equation for the threshold pressure is no

2
~2p̄r!1/2WLX1@2p̄C~W10.8L !10.4v0WLX1CF~ x̄!#

2p̄r1C2F~ x̄!2X1
2

. 4
3 kv0m, ~8!

where p̄ is the average reservoir pressure,x̄5x0

11.5p̄WL/mv0
2 is the equilibrium opening of the valve un

der this pressure,F(x) is given by~2!, andX152rc2/Vv is
the imaginary part of the acoustic impedance of the reser
cavity. The principal modifications to the corresponding
sult derived in the original treatment are insertion of nume
cal factors of order unity, derived from the replacement
Wx̄ by F( x̄) to account for air flow from the sides of th
valve and through the clearance leaks and from the inclu
of the flow-contraction coefficientC, and insertion of the
second term in the numerator, which is derived from
displacement of air by the valve motion. Note that the thre
old, and indeed all the behavior later calculated for the va
depends upon the profile of the valve tongue, if it is not fl
through the form ofF(x).

Another consequence of change in reservoir volume
the case of a swinging-door (1,2) valve, is an increase in
vibration frequency with decreasing reservoir volume, b
cause of the acoustic stiffness of the enclosed air. A sim
linear treatment suggests that the valve oscillation freque
v is given by

v2'v0
21

0.6rc2W2L2

mV
. ~9!

While the general trend of this result is correct, it ignores
effect of flow through the valve and overestimates the f
quency shift. To obtain a reliable estimate of the frequen
shift, Eqs.~3!, ~4!, and ~7! must be integrated numericall
and the oscillation frequency determined directly.
402 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000
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II. EXPERIMENTS

Figure 1 gives details of the experimental arrangem
used. The valve flap was cut from flat brass sheet of eit
0.33- or 0.15-mm thickness and was 28 mm in length and
mm in width. The relatively large width was chosen in ord
to give a good approximation to two-dimensional flo
through the valve for associated experiments in flow visu
ization. The valve flap was stiffened by a thin aluminum b
of mass about 0.8 g, glued parallel to the tip to prev
lateral oscillations, which could be observed stroboscopic
in the absence of such stiffening. The aperture under
valve was a little larger than the valve flap in both length a
width, giving a clearanceb of about 0.5 mm on all three
sides, so that the valve was ‘‘free’’ rather than strikin
against the plate. A free rather than a striking valve tong
was chosen for study because of its greater simplicity—
exact course of any strike impact has a significant effect
the vibrational behavior of a striking valve flap.

The thickness of the aperture plate was 4 mm, so that
valve flap penetrated to its opposite side during very lar
amplitude oscillation. The distancex0 between the stationary
valve flap and the plate could be varied by inserting a t
shim sheet, and was normally fixed at either 0.5 or 1.0 m
The natural frequency of the valve oscillation was in t
range 100 to 300 Hz, corresponding to the lowest natu
frequency of the flexing cantilever, the actual frequency
pending upon the sheet thickness and the added load, if
The Q value, which was measured by the free decay beh
ior, was about 55 for the bare valve and could be reduce
as little as 10 by applying adhesive tape to the flap near
clamped end.

The upstream reservoir was constructed from he
PVC pipe of inside diameter 101 mm, closed with a so
piston, the position of which could be changed to alter
reservoir volume. Air was supplied to the reservoir throug
long, narrow tube terminating in a short coaxial pipe
20-mm diameter filled with acoustically absorbent wool,
shown in Fig. 1. This arrangement minimized turbulence
the reservoir while adequately defining its volume. The is
lation effectiveness of the absorbing material was checked
using, in one experiment, a much narrower tube. The
supply itself was drawn from a high-pressure source thro

FIG. 1. The experimental setup. The upper part of the figure shows a
eral view, and the lower part a detailed view of the valve itself.
402Tarnopolsky et al.: Oscillating reed valves: Experiment
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a reducing valve, and therefore constituted a high-impeda
constant-flow source, as assumed in the theoretical treatm

The instrumentation for the measurement of all the i
portant physical parameters included: a rotameter for
steady volume flowU0 , a water manometer for the averag
reservoir pressurep0 , a pressure transducer for the varyin
reservoir pressurep(t), an accelerometer for the motion o
the valve flapx(t), a condenser microphone for the radiat
sound waveform or alternatively for the reservoir pressu
and a fast Fourier transform~FFT! analyzer for the wave-
form and spectrum of the quantities involved.

A. Oscillation threshold

One of the major predictions of the linearized thresh
theory17 is that valves of configuration (1,2) should be
able to begin autonomous oscillation when fed at an
equate pressure from a closed reservoir, which is itself
from a constant-flow source. The theory predicts that
threshold pressure for oscillation should depend upon
volume of the reservoir, there being in each case an opti
volume, determined by the physical parameters of the va
flap, near which the threshold pressure is lowest.

Most of the physical parameters of the valve were ea
measured directly, but its resonance frequency and dam
behavior required experimental determination. This w
done by flicking the valve in a controlled manner and ca
turing the decay transient of its oscillation using a mic
phone and storage oscilloscope. The bare brass valve
had little intrinsic damping, so that for many of the expe
ments the mechanical damping was augmented by ad
strips of adhesive tape to both sides of the flap close to
clamped edge. In the same way, the resonance frequen
the valve flap could be changed by gluing strip masses n
the tip of the valve flap. In all cases an adjustment was
quired in the calculations to allow for the mass added to
vibrating valve flap.

Figure 2~a! shows the measured pressure threshold
oscillation of the valve, as a function of reservoir volume,
various values of the mechanicalQ factor. It is clear that
there is indeed a volume-dependent threshold behavior o
type predicted by theory, and that the threshold pressure
as the valve damping is increased. In Fig. 2~b! the threshold
curves calculated from the theory leading to Eq.~8! are
shown. There are no adjustable parameters in the theory
the agreement with experiment is moderately satisfact
given the approximate nature of the theory, and indeed of
experiment, since the threshold behavior may well dep
upon subtleties of air flow.

Figure 3~a! shows similar curves with resonance fr
quency as the parameter. The resonance frequency
changed by adding mass to the valve tongue near its tip,
the effective mass of the tongue was evaluated from the s
in resonance frequency. The theoretical curves are show
Fig. 3~b!, and again there is broad agreement between the
and experiment. The agreement can be improved cons
ably by increasing the value of the aerodynamic damp
coefficientb, but there is no immediate justification for thi
403 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000
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B. Large-amplitude behavior

As already noted, the threshold vibration of the syst
is unstable, and rapidly grows to a limit cycle with a larg
amplitude and with an increased reservoir pressure. In
course of the experiments, this large-amplitude motion of
valve flap was monitored through a telemicroscope us
stroboscopic illumination, and was also measured by tw
integrating the output of a subminiature accelerometer
tached to the flap near its fixed end. Once oscillation beg
the valve oscillation amplitude increases sharply, as does
reservoir pressure, until a limit cycle is reached in which t
valve closes into the aperture plate for a time approach
half of each cycle. For very large oscillation amplitudes~ex-
ceeding about 5 mm in the case of our experiments! the
valve flap emerges at the back of the aperture plate and
lows secondary air flow during this part of the cycle. There
hysteresis in this behavior so that, once oscillation has
gun, the air flow into the reservoir, and thus the reserv
pressure, can be reduced without the vibration stopping.
behavior of oscillation amplitude as a function of reserv
pressure is illustrated for the case of a valve with static op
ing x051 mm and several different reservoir volumes in F
4~a!. In Fig. 4~b! the behavior calculated by integrating Eq
~3!–~7! numerically is shown, assuming an initial displac
ment of the valve flap that is analogous to flicking it with
finger. Agreement between theory and experiment is ag
satisfactory, and the hysteresis can be understood from
fact that an oscillating valve of (1,2) configuration pre-
sents a rather high, steady flow impedance because the

FIG. 2. ~a! Measured threshold oscillation pressure of the experime
valve as a function of reservoir volume, with theQ value of the free valve
flap as a parameter. For this valve the sheet thickness was 0.15 mm an
free resonance was 105 Hz.~b! Oscillation threshold as calculated from th
theory.
403Tarnopolsky et al.: Oscillating reed valves: Experiment
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ervoir pressure generated by its motion is such as to decr
the pressure, and thus the flow, when the valve is open.

The magnitude of the pressure jump when the oscillat
increases from threshold to its limit-cycle value is anoth
interesting experimental quantity, which is plotted in Fig.
The effect is greater for a small reservoir than for a la
one, as might be expected. The pressure jump can be c
lated from Eqs.~3!–~7! of the theory, essentially by perform
ing numerical experiments for progressively increasing fl
rates until oscillation begins. The calculated jump, shown
a full curve in Fig. 5, is in good agreement with the me
surements, which are shown as data points.

It is also interesting to examine the dependence of
oscillation frequency of the valve on reservoir volume. T
experimental results are shown as data points in Fig. 6
the results computed from the large-signal theory as a
curve. The agreement is again acceptably good, the la
signal frequency shift being very much smaller than that p
dicted from small-signal theory in Eq.~9!, which is shown as
a broken curve in the figure. The frequency variation is n
ther predicted nor found to depend significantly upon blo
ing pressure or valve damping.

Another measurement was of the time-varying press
within the reservoir, which was measured with either t
pressure transducer or a 1/8-in. condenser microphone.
waveform of the pressure oscillation is a distorted sinuso
as shown in Fig. 7~a!, and its phase is very nearly 180
behind that of the valve opening displacement, shown in F

FIG. 3. ~a! Measured threshold oscillation pressure of the experime
valve as a function of reservoir volume, with mass-loaded frequency
parameter. The valve sheet thickness in this case was 0.33 mm an
stiffening bar was required. MeasuredQ values ranged between 44 and 5
~b! Oscillation threshold as calculated from the theory. The effective m
of the valve flap was scaled as~frequency!22.
404 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000
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7~b!, which confirms that the major contribution to the pre
sure variation comes from the volume displacement of t
moving flap. The motion of the valve flap, as monitored b
the twice-integrated output of the accelerometer, is ve
closely sinusoidal, as is to be expected since it is operat
very close to its natural resonance frequency. Integration
Eqs. ~3!–~7! gives the form of the reservoir pressure varia
tion shown in Fig. 7~c!. The agreement with experiment is
good in relation to amplitude and phase, and moderat
good in relation to waveform, though clearly some of th
details are not captured by the theory. The variation of t

l
a
no

s

FIG. 4. ~a! Measured oscillation amplitude, as a function of mean reserv
pressure, for four different reservoir volumes given in liters as a parame
for a valve with flap thickness 0.15 mm and free resonance frequency
Hz. The arrowed curves show the hysteresis observed.~b! Calculated be-
havior omitting hysteresis effects.

FIG. 5. Measured pressure increase as a threshold oscillation is allowe
grow to its steady state, as a function of reservoir volume~data points! for
the valve of Fig. 4. The full curve shows the calculated pressure jump.
404Tarnopolsky et al.: Oscillating reed valves: Experiment
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pressure waveform when the valve is nearly fully open m
perhaps be associated with the development of a downstr
vortex in the flow, as observed in Schlieren photographs

The radiated sound spectrum can, in principle, be
rived from a knowledge of the total flow waveformU(t)
10.4WL dx/dt, which includes both flow through the valv
aperture and displacement flow. This is not reported u
here, however, since details of the spectral envelope dep
upon rather fine aspects of the valve construction and re
voir geometry.

C. Striking valves

In this study a nonstriking valve was used because
difficulty in specifying precisely the nature of the strikin

FIG. 6. Measured frequency of oscillation of the valve of Fig. 4 as a fu
tion of reservoir volume~data points!. The full curve shows the theoretica
prediction from numerical integration of the equations, while the brok
curve shows the prediction of the simple equation~9!. The vibration fre-
quency is insensitive to blowing pressure over a large range.

FIG. 7. ~a! Measured waveform of the reservoir pressure for reservoir v
ume 0.8L and an average reservoir pressure of 350 Pa.~b! Measured dis-
placement of the valve flap~as an indication of relative phase!. The shaded
region shows the portion of the cycle during which the tip of the flap
within the base-plate aperture.~c! Calculated reservoir pressure waveform
405 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000
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contact. A brief subsidiary study of striking valves was, ho
ever, undertaken. To make the behavior as reproducibl
possible, the valve flap was made a little larger than the p
aperture in all dimensions; the flap was clamped to the p
without an intervening spacer, and the valve flap was b
slightly to give a tip aperture of about 1 mm. When the val
closed, it did so around its whole periphery.

The experiments followed very much the same lines
those reported in detail above. The main difference obser
was that the limit-cycle valve oscillation was of a muc
smaller amplitude, indeed less that than 2 mm, than for a
valve, presumably because the valve flap loses a great de
energy during the impact. Stroboscopic study of the va
oscillation revealed complex behavior and the presence
higher cantilever modes, the amplitude of which depend
upon the precise geometry of the striking contact. This fac
well-known to the voicers of organ reed pipes, since re
curvature must be properly adjusted to achieve satisfac
sounding behavior, although in that case the reed config
tion is (2,1). Much the same thing happens for strikin
(1,2) valves and, because of this complication, the ma
was not pursued further here.

III. CONCLUSIONS

This experimental study of an oscillating-flap valve
the outward-swinging door (1,2) type shows that its be
havior is well accounted for by a simple theory, witho
invoking any adjustable parameters or aerodynamic com
cations. The agreement between theory and experiment is
exact, but is as good as could reasonably be expected, b
ing in mind the subtleties of reed adjustment that are
volved in the sounding behavior of reed-driven musical
struments. A reasonable explanation of this sensitivity
flow conditions is the fact that the contraction coefficientC
can actually vary between 0.5 and 1.0 depending upon
precise geometry of the flow aperture.19 There is also the
possibility that the aerodynamic damping coefficientb might
be similarly affected.

In the course of the experiments certain interesting ae
dynamic phenomena were in fact observed, particularly
formation of a downstream vortex during the closing pha
of the oscillation of the valve. The behavior of this vorte
will be reported on elsewhere, for its own intrinsic intere
since the present study suggests that it does not have a m
effect on the behavior of the valve.

Finally, we note that only the (1,2) outward-swinging
door type of valve has been studied here. The fact that
simple theory,17 with the refinements introduced abov
gives a good account of the behavior of valves of this ty
however, leads us to expect that it should be able to giv
similarly accurate description of valves of (1,1) and (2,
1) configuration, which were also included in its formul
tion.
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APPENDIX

Let j(s,t) be the form of the displacement of the valv
flap, with s measuring distance from its clamped root. T
equation of motion of the flap then has the form

@rvWh1m8d~s2s8!#
]2j

]t2
1R

]j

]t
1K

]4j

]s4
5Wp~ t !,

~A1!

whererv is the material density,W the width,h the thickness
and K the bending stiffness of the valve flap, andR is its
damping coefficient. It is also allowed that there is a furth
massm8, representing the stiffening bar, fixed to the valve
a distances8 from its root.

Since we are concerned with oscillation near the fun
mental cantilever mode of the flap at frequencyv0 , we can
write j(s,t)5@x(t)2x0#c(s) wherec(s) is the form of the
mode function,20 normalized so thatc(L)51. Multiplying
both sides of~A1! by c(s) and integrating over the flap
lengthL then gives

d2x

dt2
12k

dx

dt
1v0

2~x2x0!5
gWLp

m
, ~A2!

wherek is a new damping coefficient given by~6!, m is the
effective mass of the valve flap as given by

m5rvWLh1
m8Lc~s8!2

*0
Lc~s!2ds

'rvWLh14m8, ~A3!

and

g5
*0

Lc~s!ds

*0
Lc~s!2ds

'1.5. ~A4!

The approximate result in~A3! derives from the form of
c(s) and from the fact thats8'L for the stiffening bar.
Since s8!L for the damping material added near t
clamped edge of the flap, the contribution of its mass tom is
negligibly small.

From a knowledge of the form ofc(s), we can also
evaluate the area of the vertical component of the side op
ing beneath the valve when its tip opening isx. For the case
of a planar valve flap, as in the experiment,

a~x!5x01~x2x0!E
0

L

c~s!ds'0.6x010.4x. ~A5!
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If the flap is curved, as in many free-reed musical inst
ments, then the form ofa(x) may differ considerably from
this. The form~A5! is, of course, valid only if the flap doe
not enter the aperture block. If this happens, then a m
complicated expression must be used.
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