Oscillating reed valves—An experimental study
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The results of experiments on the threshold behavior and large-amplitude oscillation of
“outward-swinging door” vibrating flap valves in an air environment are reported and compared
with the predictions of a simple nonlinear theory that parametrizes aerodynamic effects by means of
a simple damping coefficient together with a contraction coefficient for the flow. The agreement is
acceptably good for the threshold blowing pressure for valve oscillation, the large-signal vibration
amplitude, the pressure jump in the transition from threshold to large-signal behavior, and the
variation in vibration frequency, all as functions of reservoir volume. The calculated pressure
waveform in the reservoir has the observed phase and magnitude but fails to reproduce finer details.
It is concluded that the simple theory provides an adequate account of the behavior of such valves.
There are just two parameters in the theory, describing jet contraction and aerodynamic damping,
respectively. Since these may depend significantly upon the detailed geometry, valves with different
shapes may behave in quantitatively different ways. 2@0 Acoustical Society of America.
[S0001-4966004107-2

PACS numbers: 43.75.A§VJS

INTRODUCTION instrument playing arises because description of the motion
of the soft tissue of the lip really requires at least two dis-
Pressure-controlled vibrating valves are important inplacement parametetsnd ideally a continuum descriptién.
many contexts. They provide the sound-generating mechaFhe same is true of human vocal folds and the syringeal
nism for the vocal utterances of birds, humans, and manynembranes of birds, both of which could be approximated
other animals, and also for musical instruments of the brasky (+,—) or (+,+) but are really more complex than
and reed—woodwind families. this34
The geometric and dynamic complexity of many of The remaining valve type, described by (—), does
these systems is great, since the vibrating element has mangt appear to occur naturally or in any musical instruments,
possible modes of deformation, but it has proved helpful toor to have any practical utility. This is perhaps because of its
consider three simplified situations in which the motion oftendency to simply blow closed for any applied pressure.
the valve can be described by a single displacement param- There have been many studies of the behavior-of (
eterx measuring the valve opening. We can then specify thet+) valves in woodwind instruments, particularly clarinets,
behavior of the valve by a two-element parametey,c,) following early work by Backus,but here the air column of
in which o= +1 if a steady positive pressure applied to thethe instrument is a dominant influence. A more general study
upstream or inlet port of the valve tends to increase the valvef the acoustics of valves of both-(,+) and (+,—) types
openingx, and oy = —1 if this pressure tends to close the was carried out by Fletchet al.®’ while lip valves in brass
valve. The second parametes, is defined similarly for a instruments have been investigated by Elliott and Bow&her,
pressure applied to the downstream or exit port of the valveYoshikawa® Copley and Strond? and others. The behavior
For convenience, the configuration of a valve will be de-of free reeds, as in harmoniums, has been studied by St.
scribed simply by ¢,—), for example, rather than giving Hilaire et al,'* and more recently by JohnstéhKoopman,
the complete symbol+€1,—1). Cottinghamet al,***and particularly by Bahnsoet al® A
We can recognize three distinct types of valves withinsummary of most of this work has been given by Fletcher
this simple classification. Valves of type-(+), which can  and Rossing®
be pictured as inward-swinging doors or doors that are blown  The threshold for self-excited oscillation of the three
closed, are found in the reed mechanisms of woodwind insimple valve classes in the absence of an attached resonator
struments such as clarinets or oboes. Valves of type ( has been examined theoretically in another paper by one of
—) are like outward-swinging doors or doors that are blownthe present author.In that paper it is shown that, if the
open, and describe the motion of a trumpet player’s lips oveacoustic impedance presented to the inlet of the vah#, is
at least part of the range of the instrument. Valves of con=R;+jX; and that presented to the outlet B=R,
figuration (+,+) are like sliding doors or doors that are +jX,, then a necessary condition for the initiation of self
blown sideways, and represent another possible motion of ascillation is that
trumpet player’s lips. This ambiguity in the case of brass-
01 X1— 0,X,<0. 1)
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erally, the pressure difference across the vethiat depends ture of the backing plate or ultimately protrudes through its

in detail upon valve geometry and internal damping. rear face. This is easily taken into account when the equa-
In the case of valves of configuratior-(—), which are  tions are solved numerically for large-amplitude oscillations.
considered in the present paper, the requiremént X, The vibration of the valve flap is that of a simple canti-

<0 can be achieved by supplying the valve from a reservoitever, assumed to have natural frequeagyand quality fac-
of fixed volumeV, in which caseX;= —pc?/Vw (wherep is  tor Q, so that, in the absence of air flow, its damping factor is
the density of airc the speed of sound, andthe frequency k= wy/2Q. This damping is provided largely by viscous
of the oscillation, and allowing the valve to exhaust to the losses in the surrounding air and, in some of our experi-
open air so thaX,=0. It is then found’ that there is a ments, by added mechanical damping material near the root
preferred volume for the supply reservoir at which self-of the valve flap. As shown in the Appendix, the equation of
oscillation can be maintained at low blowing pressure; formotion of the flap, expressed in terms of its tip opernng
larger or smaller reservoir volumes a greater threshold blow-
ing pressure is required. The first part of our experimental  d°X dax 1.5WLp
. i - — +2k——+ w§(X—Xg) = , (4)

study investigates these predictions. di2 dt m

The small oscillations of a valve are, however, generally
unstable, and tend to grow rapidly to large amplitude. Thiswvherex, is the static opening of the valve flap with no ap-
transition, and the limiting state achieved by the large-plied pressure andh is the effective moving mass of the
amplitude oscillations, form another major part of the studyvalve flap, as derived in the Appendix. For the experimental
In contrast to the threshold determination, which can be dearrangement used, the valve tongue is initially flat and is
scribed by linearizing the equations of flow and mottém, ~ raised a distance, above the base plate. It then follows, as
description of this large-amplitude behavior necessarily inalso shown in the Appendix, that
volves proper treatment of the many nonlinearities involved.

a(x)=~0.6xy+ 0.4x. (5)

|. BACKGROUND THEORY In Eq. (4) we might expect the damping coefficidnto
, ) be a constant, determined by the combination of internal
The theoretical background that the experiments are dgsses in the valve flap material and viscous damping in the

signed to check has been given beftve repeat here only - srrounding air. The value df should thus be determinable
its elements, and give details of a few refinements required tg oy, the quality factorQ of the free oscillation damping of
bring its assumptions closer to the realities of the experiipe valve flap by the relatiok= wo/2Q. Schlieren images of
ment. The valve flap is taken to be a flexing plate of legth - the oscillating valve, to be reported elsewhere, show how-
width w, and effecnve_ masm, clamped across one end. In oyer that a vortex develops downstream during the closing
the original theory, air was assumed to issue through thgat of the valve cycle, and it would be surprising if this did
valve only across its tip, where the height of the opening isyot contribute damping to the mechanical oscillation of the
X(t). To bring this treatment clost_er to the realities Qf experi-yalve. To allow for this possibility, we introduce an addi-
ment, we must allow for an additional escape of air throughiona| damping proportional to the change in momentum flux
the opening of average width(x) along the sides of the  caysed by the motion of the valve flap. Since the change in
valve, and through clearance gaps of widttbetween the 0w direction is presumably proportional to (3dx/dt,

valve tongue and the base plate. The total exit area of th@here, is the air jet velocity as determined by Bernoulli’s
valve is thus approximately principle, it is a reasonable assumption that the extra damp-

F(x)=W[x%+b?]¥?+2L[a(x)?+b?]2 (2)  ingis proportional tu X, dx/dt per unit vibrating length of

) . edge of the valve flap. We can then write
As already discussed, the valve is assumed to be fed

from a reservoir of volumeV, which is supplied with a g pv(W+0.8L)X,

steady volume flowdJ, from a high impedance source, and k= ﬁ+ - m (6)

to exhaust to free air so that the downstream impedance is

zero. The volume flowd(t) through the valve is given by where B is a numerical coefficient which we expect to be
Bernoulli's equation, modified by a flow-contraction coeffi- approximately unity. In the calculations to follow, it is as-
cientC, often writtenC, in the literature, which has the value sumed tha3=1, and the resulting aerodynamic damping is
C=0.61 for flow through a sharp-edged sfit!® The pres- then small enough that its precise value is not important.
sure must also be supplemented by a small term to represent A third and final equation relates the pressure in the
the inertia of the air in the channel of lengéhat the tip of  reservoir to the steady infloW,, the outflowU(t) through

the flap. The resulting equation for the pressp(é) in the  the valve, and the change in reservoir volume caused by the

reservoir is then valve vibration. This leads to
pU? a| pUs dp pc? dx
p= 2C2F(x)2+a CEX|" (3) FTRRY; Ug—U 0.4\NLOlt . (7

wherep is the density of air. While the openingis a linear The quantity 0.4VLX' is approximately the volume dis-
variable for small oscillations of the valve tongue, it has aplaced by a cantilever strip of widW and length_ when its
more complex form when the valve tongue enters the apettip is displaced from equilibrium by an amouxt.
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A. Small-signal approximation volume flow U,
from air supply

A simpler form of these three equations, linearized for
the case of small oscillationg<xy, by writing U, x, andp ﬁj
in the form U=U,+ U sinwt etc., formed the basis of the e wih
earlier analysis of oscillation threshdlfithough in the ex- damping material moveable piston
amples computed there the flow-contraction effect, the flow
inertia in the valve gap, the contribution of valve displace- valve flap
ment to reservoir pressure, the flow through the sides of the
valve, and the additional aerodynamic damping, were all
omitted. For the particular values of the physical parameters
of the valve used in the present experiment, in which both ) ~ stiffening bar
blowing pressure and frequency are rather low, it turns out e plae aperture
that the contributions of flow inertia, and to a large extent _ ]
aerodynamic damping, can indeed be neglected, but sidéC®: 1: The experimental setup. The upper part of the figure shows a gen-
. . eral view, and the lower part a detailed view of the valve itself.
flow and the flow-contraction correction must both be taken
into account.
In the present paper, linearized versions of the full equati. EXPERIMENTS
tions are used for threshold calculations, and the complete
equations are solved numerically to predict the large-  Figure 1 gives details of the experimental arrangement
amplitude behavior. The linearized threshold equations arésed. The valve flap was cut from flat brass sheet of either
derived in the same way as bef&FeNeg|ecting the air- 0.33- or 0.15-mm thickness and was 28 mm in length and 52
inertia term, the equation for the threshold pressure is nowmm in width. The relatively large width was chosen in order
to give a good approximation to two-dimensional flow
(2pp) YAWL X, [ 2pC(W+0.8L) + 0.4wWL X, CF(X) ] f[hro_ugh the valve for associa_ted experimen_ts in flqw visual-
- — e —2u2 ization. The valve flap was stiffened by a thin aluminum bar
2pp+ CF(X)°X3 of mass about 0.8 g, glued parallel to the tip to prevent
lateral oscillations, which could be observed stroboscopically
in the absence of such stiffening. The aperture under the
— . ) — valve was a little larger than the valve flap in both length and
where p is the average reservoir pressur&=Xo \idth, giving a clearancd of about 0.5 mm on all three
+1.5pWL/mwj is the equilibrium opening of the valve un- sides, so that the valve was “free” rather than striking
der this pressurd; (x) is given by(2), andX;=—pc’/Vw is  against the plate. A free rather than a striking valve tongue
the imaginary part of the acoustic impedance of the reservoias chosen for study because of its greater simplicity—the
cavity. The principal modifications to the corresponding re-exact course of any strike impact has a significant effect on
sult derived in the original treatment are insertion of numeri-the vibrational behavior of a striking valve flap.
cal_factors_of order unity, derived from the replacement of  The thickness of the aperture plate was 4 mm, so that the
Wx by F(x) to account for air flow from the sides of the valve flap penetrated to its opposite side during very large-
valve and through the clearance leaks and from the inclusioamplitude oscillation. The distaneg between the stationary
of the flow-contraction coefficien€, and insertion of the valve flap and the plate could be varied by inserting a thin
second term in the numerator, which is derived from theshim sheet, and was normally fixed at either 0.5 or 1.0 mm.
displacement of air by the valve motion. Note that the threshThe natural frequency of the valve oscillation was in the
old, and indeed all the behavior later calculated for the valverange 100 to 300 Hz, corresponding to the lowest natural
depends upon the profile of the valve tongue, if it is not flat,frequency of the flexing cantilever, the actual frequency de-
through the form of(x). pending upon the sheet thickness and the added load, if any.
Another consequence of change in reservoir volume, immhe Q value, which was measured by the free decay behav-
the case of a swinging-door{,—) valve, is an increase in ior, was about 55 for the bare valve and could be reduced to
vibration frequency with decreasing reservoir volume, be-as little as 10 by applying adhesive tape to the flap near its
cause of the acoustic stiffness of the enclosed air. A simplelamped end.
linear treatment suggests that the valve oscillation frequency The upstream reservoir was constructed from heavy
w Is given by PVC pipe of inside diameter 101 mm, closed with a solid
piston, the position of which could be changed to alter the
0.6pc”W2L? reservoir volume. Air was supplied to the reservoir through a
mV ’ ©) long, narrow tube terminating in a short coaxial pipe of
20-mm diameter filled with acoustically absorbent wool, as
While the general trend of this result is correct, it ignores theshown in Fig. 1. This arrangement minimized turbulence in
effect of flow through the valve and overestimates the frethe reservoir while adequately defining its volume. The iso-
guency shift. To obtain a reliable estimate of the frequencyation effectiveness of the absorbing material was checked by
shift, Egs.(3), (4), and (7) must be integrated numerically using, in one experiment, a much narrower tube. The air
and the oscillation frequency determined directly. supply itself was drawn from a high-pressure source through

valve

reservoir volume V

> %kwom, (8)

2.2
W~ wyt

402  J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000 Tarnopolsky et al.: Oscillating reed valves: Experiment 402



a reducing valve, and therefore constituted a high-impedance 4
constant-flow source, as assumed in the theoretical treatment
The instrumentation for the measurement of all the im-
portant physical parameters included: a rotameter for the
steady volume flowJ,, a water manometer for the average
reservoir pressurpy, a pressure transducer for the varying

500

400 \ } f
Q=55/
300 -

Threshold pressure in pascals

reservoir pressure(t), an accelerometer for the motion of \. / Q=29
the valve flapx(t), a condenser microphone for the radiated 200 \ v /’
sound waveform or alternatively for the reservoir pressure, 100 \._ Q=19
and a fast Fourier transfortF-FT) analyzer for the wave- s e Q=16
form and spectrum of the quantities involved. 0 @
600
A. Oscillation threshold “ /
] W
One of the major predictions of the linearized threshold g 500 \\ Q=55/' /
theory” is that valves of configuration,—) should be 2
. . . =1 /
able to begin autonomous oscillation when fed at an ad- g // Q=29
equate pressure from a closed reservoir, which is itself fed ¢ 300 —
from a constant-flow source. The theory predicts that the & \\\ / / =19
: y P 2 ~——T1 — e

threshold pressure for oscillation should depend upon the’g 200 Q\// P

volume of the reservoir, there being in each case an optimal 5 o, 1 Q=16
volume, determined by the physical parameters of the valve ®)
flap, near which the threshold pressure is lowest. 0 | 5 . . s

Most of the physical parameters of the valve were easily
measured directly, but its resonance frequency and damping

behavior required experimental determination. This Wa_éZIG. 2. (@) Measured threshold oscillation pressure of the experimental
) valve as a function of reservoir volume, with tQevalue of the free valve

do_ne by f|ICklng the Va_lve n a Contr(.)”e(.j manper and .Cap'ﬂap as a parameter. For this valve the sheet thickness was 0.15 mm and the
turing the decay transient of its oscillation using a micro-free resonance was 105 Hb) Oscillation threshold as calculated from the

phone and storage oscilloscope. The bare brass valve flapFory:
had little intrinsic damping, so that for many of the experi-
ments the mechanical damping was augmented by addirfg Large-amplitude behavior
strips of adhesive tape to both sides of the flap close to the As already noted, the threshold vibration of the system
clamped edge. In the same way, the resonance frequency &f unstable, and rapidly grows to a limit cycle with a large
the valve flap could be changed by gluing strip masses neamplitude and with an increased reservoir pressure. In the
the tip of the valve flap. In all cases an adjustment was reeourse of the experiments, this large-amplitude motion of the
quired in the calculations to allow for the mass added to thealve flap was monitored through a telemicroscope using
vibrating valve flap. stroboscopic illumination, and was also measured by twice
Figure 2a) shows the measured pressure threshold fofntegrating the output of a subminiature accelerometer at-
oscillation of the valve, as a function of reservoir volume, fortached to the flap near its fixed end. Once oscillation begins,
various values of the mechanic@l factor. It is clear that the valve oscillation amplitude increases sharply, as does the
there is indeed a volume-dependent threshold behavior of tH&SErvoir pressure, until a limit cycle is reached in which the
type predicted by theory, and that the threshold pressure ris¢@/ve closes into the aperture plate for a time approaching
as the valve damping is increased. In Figp)2he threshold half of each cycle. For very large oscillation amplitudez-

curves calculated from the theory leading to E8) are ceeding about 5 mm in the case of our experimettte

shown. There are no adjustable parameters in the theory, aﬁ/&llve flap emerges at the pack Pf the aperture plate and _aI—
lows secondary air flow during this part of the cycle. There is

the agreement with experiment is moderately satisfactory, - . . .
iven the aporoximate nature of the theorv. and indeed of thI’\ysteresls in this behavior so that, once oscillation has be-
g pproxi u Ys ! un, the air flow into the reservoir, and thus the reservoir

experiment, since the threshold behavior may well depen ressure, can be reduced without the vibration stopping. The
upon subtleties of air flow. , behavior of oscillation amplitude as a function of reservoir
Figure 3a) shows similar curves with resonance fre- nrasqre s illustrated for the case of a valve with static open-
quency as the parameter. The resonance frequency Wagyx —1 mm and several different reservoir volumes in Fig.
changed by adding mass to the valve tongue near its tip, alg). In Fig. 4(b) the behavior calculated by integrating Egs.
the effective mass of the tongue was evaluated from the shift)(7) numerically is shown, assuming an initial displace-
in resonance frequency. The theoretical curves are shown iment of the valve flap that is analogous to flicking it with a
Fig. 3(b), and again there is broad agreement between theorfinger. Agreement between theory and experiment is again
and experiment. The agreement can be improved considesatisfactory, and the hysteresis can be understood from the
ably by increasing the value of the aerodynamic dampingact that an oscillating valve of#,—) configuration pre-
coefficientB, but there is no immediate justification for this. sents a rather high, steady flow impedance because the res-

Reservoir volume in liters
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FIG. 3. (a) Measured threshold oscillation pressure of the experimental

valve as a function of reservoir volume, with mass-loaded frequency as &!C- 4 (&) Measured oscillation amplitude, as a function of mean reservoir

parameter. The valve sheet thickness in this case was 0.33 mm and RSESSUre, for four different reservoir volumes given in liters as a parameter,
stiffening bar was required. Measur&values ranged between 44 and 52. for a valve with flap thickness 0.15 mm and_free resonance frequency 106
(b) Oscillation threshold as calculated from the theory. The effective masdi2- The arrowed curves show the hysteresis obsertdCalculated be-

of the valve flap was scaled &sequency 2. havior omitting hysteresis effects.

7(b), which confirms that the major contribution to the pres-
ervoir pressure generated by its motion is such as to decreasg@re variation comes from the volume displacement of the
the pressure, and thus the flow, when the valve is open. moving flap. The motion of the valve flap, as monitored by

The magnitude of the pressure jump when the oscillationhe twice-integrated output of the accelerometer, is very
increases from threshold to its limit-cycle value is anotherclosely sinusoidal, as is to be expected since it is operating
interesting experimental quantity, which is plotted in Fig. 5.very close to its natural resonance frequency. Integration of
The effect is greater for a small reservoir than for a largeEqgs. (3)—(7) gives the form of the reservoir pressure varia-
one, as might be expected. The pressure jump can be calction shown in Fig. 7c). The agreement with experiment is
lated from Eqs(3)—(7) of the theory, essentially by perform- good in relation to amplitude and phase, and moderately
ing numerical experiments for progressively increasing flowgood in relation to waveform, though clearly some of the
rates until oscillation begins. The calculated jump, shown agletails are not captured by the theory. The variation of the
a full curve in Fig. 5, is in good agreement with the mea-
surements, which are shown as data points. 00

It is also interesting to examine the dependence of tht
oscillation frequency of the valve on reservoir volume. Theg
experimental results are shown as data points in Fig. 6 ang i
the results computed from the large-signal theory as a fulg
curve. The agreement is again acceptably good, the Iarg<§ : \
signal frequency shift being very much smaller than that pre g 20
dicted from small-signal theory in EQ), which is shown as
a broken curve in the figure. The frequency variation is nei-,
ther predicted nor found to depend significantly upon blow-
ing pressure or valve damping.

1T Press

/

Reservo

. . ¢
Another measurement was of the time-varying pressur: L
within the reservoir, which was measured with either the s 1 15 2 25 3
pressure transducer or a 1/8-in. condenser microphone. T} Reservoir volume in liters

waveform of the pressure oscillation is a distorted SInuSOIdFIG. 5. Measured pressure increase as a threshold oscillation is allowed to

as ?hown in Fig. @, and it_S phf_ise is very nearly ]_-800_ grow to its steady state, as a function of reservoir voluttaa points for
behind that of the valve opening displacement, shown in Figthe valve of Fig. 4. The full curve shows the calculated pressure jump.
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114

contact. A brief subsidiary study of striking valves was, how-
i * ever, undertaken. To make the behavior as reproducible as
12 \ ¥ possible, the valve flap was made a little larger than the plate

aperture in all dimensions; the flap was clamped to the plate
N < without an intervening spacer, and the valve flap was bent
¢ X slightly to give a tip aperture of about 1 mm. When the valve
> closed, it did so around its whole periphery.
\ The experiments followed very much the same lines as
. . those reported in detail above. The main difference observed
LI was that the limit-cycle valve oscillation was of a much
_ . 29 smaller amplitude, indeed less that than 2 mm, than for a free
0 05 t s 2 25 3 valve, presumably because the valve flap loses a great deal of
Reservoir volume in litres energy during the impact. Stroboscopic study of the valve
FIG. 6. Measured frequency of oscillation of the valve of Fig. 4 as a func-OScillation revealed complex behavior and the presence of
tion of reservoir volumedata points The full curve shows the theoretical higher cantilever modes, the amplitude of which depended
prediction from numerical integration of the equations, while the brokenupon the precise geometry of the striking contact. This fact is
curve shows the prediction of the simple equati®h The vibration fre- . . C
quency is insensitive to blowing pressure over a large range. well-known to the voicers of qrgan reed plpes, Sm?e reed
curvature must be properly adjusted to achieve satisfactory

pressure waveform when the valve is nearly fully open maﬁoun_ding behavior, although in tha_t case the reed con_figura-

perhaps be associated with the development of a downstrealf" IS (—.+). Much the same thing happens for striking

vortex in the flow, as observed in Schlieren photographs. (+~) valves and, because of this complication, the matter
The radiated sound spectrum can, in principle, be deWas not pursued further here.

rived from a knowledge of the total flow wavefori(t)

+0.4AWL dxdt, yvhich includes both flovy through the valve ||| coONCLUSIONS

aperture and displacement flow. This is not reported upon _ _ o

here, however, since details of the spectral envelope depend This experimental study of an oscillating-flap valve of

upon rather fine aspects of the valve construction and resefhe outward-swinging door+, —) type shows that its be-

110

08 A4
1 ) ]

Sounding frequency in hertz

106

104

voir geometry. havior is well accounted for by a simple theory, without
invoking any adjustable parameters or aerodynamic compli-
C. Striking valves cations. The agreement between theory and experiment is not

_ . exact, but is as good as could reasonably be expected, bear-
_In this study a nonstriking valve was used because Ofng in mind the subtleties of reed adjustment that are in-
difficulty in specifying precisely the nature of the striking yolved in the sounding behavior of reed-driven musical in-

struments. A reasonable explanation of this sensitivity to

S 800 flow conditions is the fact that the contraction coefficiént

E 600 can actually vary between 0.5 and 1.0 depending upon the
% precise geometry of the flow apertdfeThere is also the

$ 400 possibility that the aerodynamic damping coefficignnight

o 200 /\/ be similarly affected.

g 0 In the course of the experiments certain interesting aero-
2 (@) \/ \/ \/ dynamic phenomena were in fact observed, particularly the
R4 200 formation of a downstream vortex during the closing phase
s 4 of the oscillation of the valve. The behavior of this vortex
:aj g 2 \ /\ );O /\ /\ will be reported on elsewhere, for its own intrinsic interest,
k= E [2) — e . \ since the present study suggests that it does not have a major
g TN \\\\\\\\\‘\\\\\\\\\\\\\\\v\\\\\\\\\\\\\\\\\\x\\\\\\\\\\\\\\\ effect on the behavior of the valve.

Finally, we note that only the¥,—) outward-swinging

door type of valve has been studied here. The fact that the
simple theory)” with the refinements introduced above,
gives a good account of the behavior of valves of this type,
however, leads us to expect that it should be able to give a
J similarly accurate description of valves of(+) and (—,
+) configuration, which were also included in its formula-
©
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FIG. 7. (a) Measured waveform of the reservoir pressure for reservoir vol-

ume 0.8L and an average reservoir pressure of 350(BlaMeasured dis- ACKNOWLEDGMENT

placement of the valve flafas an indication of relative phgs&he shaded . .
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405  J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000 Tarnopolsky et al.: Oscillating reed valves: Experiment 405



APPENDIX

Let £(s,t) be the form of the displacement of the valve
flap, with s measuring distance from its clamped root. The

equation of motion of the flap then has the form

PE_9E I
[p,Wh+m'8(s—s')]— +R—+K—=Wp(t),
Jt? at Jst

(A1)

wherep, is the material densityyV the width,h the thickness
and K the bending stiffness of the valve flap, aRdis its

If the flap is curved, as in many free-reed musical instru-
ments, then the form od(x) may differ considerably from
this. The form(A5) is, of course, valid only if the flap does
not enter the aperture block. If this happens, then a more
complicated expression must be used.

!s. Adachi and M. Sato, “Trumpet sound simulation using a two-
dimensional lip vibration model,” J. Acoust. Soc. ArA9, 1200—-1209
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