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A theoretical and experimental study of energy transfer between the vibrational 
modes of a symmetrically kinked bar with clamped ends is described. Two non-linear 
mechanisms responsible for energy transfer from one mode to another at twice the 
frequency are identified. The first arises from the interaction between shear and tensional 
forces at the kink and the second from unbalanced moments across the kink. In the 
system studied, the first of these mechanisms is dominant. A further related mechanism 
is responsible for energy transfer to modes at three times the base frequency. When a 
kinked bar with mode frequencies of a few hundred hertz is shaped so that two modes 
have the desired 2 to 1 frequency relation and is excited by striking it at a node of the 
higher mode, then the amplitude of that mode rises from zero to a maximum in a time 
of order 0.1 s and then decays. Theory and experiment are in quite good agreement in 
relation to the time delay to the maximum amplitude and the magnitude of this 
maximum. The results contribute to an understanding of the vibrational behaviour of 
certain musical gongs and are also relevant to other systems. 

1. INTRODUCTION 

The linear vibrational behaviour of strings, bars, plates and shells is well understood, 
although the complexity of the analysis increases as we progress through this series. Also 
well understood and documented is the non-linear “hardening” behaviour, with increasing 
amplitude, of the vibrations of strings, bars and flat plates clamped rigidly at their edges 
[l, 21. The situation for shells is more complex and may result in either hardening or 
softening behaviour depending on thickness and curvature [3] but again the basic theory 
is well understood. 

There is, however, another effect of non-linearity observed in such systems when the 
boundary conditions are a little more complicated which results in a coupling between 
modes and a transfer of energy from those initially excited ‘to others which may be 
completely missing from the original motion. In certain musical gongs designed to exploit 
this effect there may be a nearly complete transfer of vibrational energy from low frequency 
to high frequency modes over a time of order one second, giving a pronounced audible 
effect [4]. The phenomenon is, however, of more general and fundamental interest than 
this particular example might suggest. 

As a first step towards understanding this non-linear mode coupling and energy transfer, 
we began by demonstrating and analyzing the phenomenon for a flexible string passing 
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over a non-rigid bridge [5]. In that system both frequency doubling and frequency tripling 
were observed and, since its mode frequencies are harmonic to a good approximation, 
energy transfer to missing modes on a timescale of about 0.1 seconds was observed and 
accounted for by the theory. 

The present paper represents the second step in this development and examines related 
behaviour in simply kinked bars, the kink being found to be essential to the process if 
simple clamped boundary conditions are assumed. A simple symmetrically kinked bar 
was chosen for the study, partly for reasons of simplicity and partly because it represents 
an appropriate progression between a string passing over a bridge and a gong in the form 
of a plate bounded by a conical flange. The phenomena discussed, however, have more 
general occurrence. 

The situation studied is shown in Figure 1, the bar being symmetrically kinked at points 
B and B’ and rigidly clamped at its extreme ends, C and C’. We concentrate our attention 
on symmetric modes to reduce the algebra-antisymmetric modes can be treated similarly 
and there is no coupling between the two classes. We shall find that the essence of the 
non-linearity is the amplitude-dependent tension generated in the bar by its motion and 
the coupling of this tension to shear forces at the kinks B and B’, though there is a related 
but less significantly non-linearity associated with coupling to the bending moments. 

Figure 1. The kinked bar and its co-ordinate system. 

2. LINEAR THEORY 

As our method of analysis looks at the effects of non-linear forces on the linear modes 
of the bar, it is necessary first to calculate the linear solution to the equation of motion 
of the bar. In the simplest linear approximation, the equation of motion for any straight 
section of bar may be written 

p a2t/at2 = -QK= a4(/ax4+ (T,/S) a2(/ax2 - D a&/at, (1) 

where 5 is the normal displacement, p is the density of the material, S is the cross-sectional 
area, K is the radius of gyration, Q is Young’s modulus, D is a measure of damping and 
T, is the tension in the bar. With this co-ordinate system adopted for the section AB of 
the bar with length L, a simple change of notation gives the equation of motion for the 
bent end BC with length 1, 

p a21/at2= -QK= a4c/dy4+( T,/S) a21Jay2- D g/at, (2) 

where 5 is the normal displacement and T2 is the tension along this section. The 
co-ordinates are defined in Figure 1. 
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For simplicity only modes symmetric about the midpoint of the bar will be considered. 
Symmetry then requires the following conditions at point A: 

at/ax = 0, a3t/ax3=o at x=0. (3) 

The solution to equation (1) is therefore 

l,,(x) = [a, cos a,x+ b, cash (Y,x] sin (w,t+ d,) exp(-t/T,,), (4) 

where a, and b, are constants dependent only on further matching conditions at point 
B, w, is the mode frequency, and 7, is derived from the damping coefficient D. 

Boundary conditions at the clamped end C, namely 

5=0, allay =o at y=o, (5) 

give the solution to equation (2) as 

[(y)=[A,(sincr,y-sinhcr,y)+B,(cos(~,y-cosha,y)] 

xsin(w,t+&)exp(-t/7,) (6) 

where again the constants A, and B, depend on matching conditions at point B. One 
can assume for the linear approximation that T, = Tz = 0 so that, in both equations (4) 
and (6), 

(Y, = [w’~P/QK’]““. (7) 

Matching conditions at the point B can now be used to determine the relation between 
a,, b, and A,,, B, and also the mode frequency w, and decay time 7,. For continuity at 
B one must equate the components of displacement and write quite generally, as illustrated 
in Figure 2, with 2,) 2, for t(L), l(I) respectively, these quantities being negative as drawn, 

2, = -6 sin 4 + Z, cos 4, -A=6cos4+Zzsin+ (8) 

A and S are the displacements parallel to the x and y axes respectively, arising out of 
second-order changes in length of the bar and may therefore be equated to zero in first 
order. This reduces equations (8) to 

z, = z, cos 4, 0 = Z, sin 4 (9) 

so that, provided 4 # 0, then Z, = Z, = 0, and point B remains fixed. Furthermore since 
bending moments at B must be finite and continuous, 

atlax = -aUay , a2[/d2 =a21/ay2 . (10) 
x=L \‘=I r=L y = 1 

&,J___--__ 

Figure 2. Second-order displacements at the kink. A and S are positive and Z, , Z, negative as drawn. 
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Figure 3. Frequencies of the symmetric modes of a kinked bar with central length 30 cm and thickness 0.6 mm 
as the length I of the clamped end sections is varied. 

These conditions are sufficient to relate a,, b,, A,, and I?,, and to produce an equation 
relating the frequencies w, of the vibrational modes to the lengths L and 1 of the bar 
sections. Figure 3 is a plot of the variation of the frequencies of the first four symmetric 
modes with the length I of the section BC while L, the length of section AB, remains 
constant. These modes are, of course, orthogonal. 

3. NON-LINEAR FORCING TERMS 

As suggested earlier, there are two separate non-linear forcing terms to be considered. 
The first, and as it turns out the more important one, arises from the coupling of tension 
and shear forces of the bar sections. Figure 4 shows the shear and tensile forces present 
on the bar sections AB and BC. Balance of forces at the bend B requires 

F, + F2 cos C)J - T, sin 4 = 0, T, - F2 sin 4 - T2 cos C#J = 0, (11912) 

which in turn leads to 

T, = (F, cos C$ + F,)/sin 4, T2 = (F, + F2 cos 4)/sin 4. (13,141 

Since F, and F2 are shear forces at point B, they may be written as 

F, = -QK~S a3[/ax3 
I 

, F2 = -Qtc2S a31/ay3 (1% 16) 
x=L +’ 

Figure 4. Force balance at the kink. 
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where the approximation that f and 5 are the linear modes previously derived has been 
used. One can see from equations (13)-(16) that T, and T2 are of first order in 6 and 5; 
however their inclusion in equations (1) and (2) is such that the forcing terms T, a2[/ax2 
and T2 a21/ay2 are second order. For a single mode (5, l) of frequency w on the bar, it 
is clear from expressions (13) and (14), taken with expressions (15) and (16), that these 
forcing terms have frequency 2~. 

The second non-linearity to be considered arises from unbalanced moments around 
point B. This time the non-linear driving mechanism is derived independently of the 
linear modes and applied later to the linear solution. Equations (l), (2), (4) and (6) still 
hold but the boundary conditions at point B are now written as the full equations (8) to 
include the second-order change in length of the bar that was neglected in the linear case. 
These length changes are given by 

A = L[I+(ag/ax)2]‘/2dx-L 
I 

(17) 
0 

for section AB and 

6= ‘[l+(a{/ay)2]1’2dy-I 
I 

(18) 
0 

for BC. Thus for a bar vibrating with frequency o, point B undergoes both a static and 
an oscillatory (2~) displacement. Figure 2 illustrates the oscillatory displacements around 
the static displacement of B. The static displacement may be neglected as it is not significant 
in these investigations, so that the non-linear displacements &,, &,, can be written as 

& = 2, (x) cos 2wt, f;, = Z,(y) cos 2ot. (19,20) 

It should be noted that .$ and 55 are the solutions to equations (1) and (2) but with 
different boundary conditions at point B from those of the linear solutions. Hence, 
neglecting damping, one may write 

Z, = e cos CY~X + f cash (Y,x, (21) 

Z, = E(sin cu,y - sinh a,y) + F(cos a,y -cash a,~). (22) 

As has been said, point B may no longer be taken to be fixed as in the linear case. 
However one may approximate by assuming that the angle 4 remains unchanged and 
that there are no linear modes of frequency 20 initially present. For the linear modes 
one would have had 

5(L) = 5(l) = 0, a4Vaxl,=, = -aUayly=, (23) 

whereas for the non-linear mode, to a first approximation, 

ag’/axl,=, = 0, ar’/a&, = 0. (24) 

Equation (24) relates e to f and E to F. Furthermore the geometry of Figure 2 gives, at 
point B, since Z, and Z2 as drawn are negative, 

Z, = -S sin 4 + Z2 cos 4, Z,=-Asin4+Z,cos+ (25,26) 

Together with equations (19)-(22) these are now sufficient conditions to express the 
amplitude e of the non-linear 2w mode in terms of the amplitude a of the linear o mode 
initially present on the bar. 
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The forcing mechanism at point B that is being considered at present is a result of 
unbalanced bending moments MI and Mz on the two sections of the bar, where 

M, = -QSK’ a2&J~x2, M2 = -QSK’ a2&Jay2. (27,28) 
The total unbalanced moment M = M, - M2 then appears as a driving term in equations 
(1) and (2) of the form 

M(d/dx)G(x - L), M(dldy)S(y - 0, (29) 
where 6(x) is the Dirac delta function. The frequency of this driving term is, once 
again, 2~. 

The length changes A and S of equations (18) and (19) lead to a further non-linearity 
which requires identification, though it will not be investigated in detail. As well as a 
concentrated moment of frequency 2w at the kink, these contractions give rise to tension 
forces T; and T; in the two parts of the bar, also at a frequency 2~. Indeed the tension 
T: would be present for the same reason in a straight bar with rigidly clamped ends. The 
driving terms arising from this tension have the forms 

T; a2t/ax2, T; a2{/ay2 (30) 

and are of third order and frequency 3~. Their importance can be expected to be less 
than that of second order terms at frequency 20 already discussed. 

4. SOLUTION 

The equations of motion (1) and (2) must now be modified to include the non-linear 
forcing terms specifically. To do this one can suppose that u,(t)+,(x) represents the 
normal modes over the whole range of x from 0 to L + 1, with &(x) = &(x) for 0 < x G L 
and &,(x)=&,(L+I-x) for Lsx G L+ 1. One can further suppose that the & are 
normalized over this whole range-they are, of course, orthogonal. The problem in hand 
is to examine the behaviour of a mode p of frequency wP and small amplitude in the 
presence of a large-amplitude mode m, where wP = 2~0,. Equations (1) and (2) for mode 
p can then be written in combination as 

2 4 
T(m) a’+ 

&,3= -QK~$-$D+~~+- 
at S &II ---$+M(Zm)~F(x-L), (31) 

where T(m) = T, for OCxG L and T2 for LCX c L + 1. T(m) and u, vary with frequency 
W, and M(2m) with frequency 2w,. 

Now multiplying both sides of (31) by t&(x) and integrating over 0 G x G L+ 1, in view 
of the orthonormality, gives 

M(2m) W 
$$+w~up=-f~+$[T,(m)l,+T2(m)12]+-- 

dx x=L’ 
(32) 

P 

where 
L d2h (x) dx 

L+I 
I, = *pwdX2 3 I2 = 

d29 (x) 
L 

J/,(x)~ dx. (31) 

The second and third terms on the right side of equation (32) are forcing terms, both 
with frequency 20,. They vanish in the linear approximation. 

The relative importance of the contribution made by the tension terms T and moment 
term M in equation (32) is not immediately clear and may vary from case to case. For 
the relatively thin bar examined experimentally, theory suggests that the tension terms 
are clearly dominant and indeed the moment term is so small it can be neglected. 
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If one had been interested in the third order 3~ terms set out in expression (30) then 
these would enter equation (32) similarly as [ TiZ, + TiZ,]. Since the integral I, does not 
vanish even for a rigidly clamped bar, this mode coupling mechanism is always present. 
This is in counter-distinction from the case of a rigidly supported string, for which the 
equivalent integral vanishes identically. 

The differential equation (32) for the pth mode has the general form 

d2u,,/dtZ+ w;u, = g(t), 

where g contains both damping and forcing terms. If one writes 

(34) 

up = up sin (opt + 19,), (35) 

where both ap and 6, are slowly varying functions of time, then equation (34) is in the 
standard form for treatment by the method of slowly varying parameters [6,7]. The 
procedure is now analogous to that used in the previous analysis of the string [5] and 
the resulting equations are 

(ri,)=p,a2,cos[(2w,-w,)t+28,-8,]-a,/rp, (36) 

(0,) = P,(&l~J sin [(20, -w,)t+2& - @,I, (37) 

where the mode coupling coefficient P,,, follows from equation (32) and it has been 
assumed that wP = 2w,. 

Since all that is driving mode p, when it is assumed to start from zero amplitude, is 
the second harmonic of mode m, and since a,, >> ap has been assumed, one can write 

8, = const, e, = 2w, -wp, (38) 

and then equation (37) gives 

2wln -wP = p,(uQa,) sin (26, - e;), (39) 

where 0; is the value of 0, at t = 0. Inserting expressions (38) and (39) in equation (36) 
then gives 

(ci,)=&$7Z,{l-(20, -“,)2a~/p~a4,}“2-ap/Tp. (40) 

Clearly the rate of increase of up is greatest if the resonance condition wP = 2w, is closely 
satisfied, as indeed one should expect. 

In the experiment to be described, the amplitude of mode m is initially large and then 
decays exponentially, while the amplitude of mode p is initially nearly zero. Equation 
(40) then predicts that ap will rise to a maximum, which depends on the behaviour of 
a,, and then decay towards zero. 

This behaviour can be made explicit for the simple case in which the decay times 7, 
and 7P are constants and wP is exactly equal to 2w,. Integration of equation (40) for the 
case of no initial excitation of mode p then gives 

where a: is the initial amplitude of mode m. In the more general case, integration of 
(37) and (40) can give beat-like phenomena superposed on a curve of the same general 
shape as given by (41). 

Another simple case that can be solved explicitly is that of continuous excitation of 
mode m to amplitude a:. This is equivalent to letting 7, + 00, so that 

a,(t) =&(~0,)~~,(1 -e-“‘p). (42) 
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5. EXPERIMENT 

Since mode conversion is significant only when one normal mode has nearly twice the 
frequency of another, the dimensions of the bar are important. For a galvanized steel bar 
of rectangular cross-section and thickness O-6 mm, and length 30 cm between B and B’ 
(refer to Figure l), the lengths of ends BC and B’C’ necessary to achieve an appropriate 
resonance can be calculated. Figure 3 shows how the resonant frequencies of the symmetric 
modes vary with change in length of the bent ends. The figure shows that, for such a bar, 
if the bent ends are about 9 cm in length, then the third symmetric mode (oJ will have 
twice the frequency of the second symmetric mode (o*). 

A bar of these dimensions was clamped between two tilting vices and the admittance 
characteristic at its centre point A determined with a Briiel & Kjaer impedance head type 
8001 in conjunction with an integrator and a dual channel FFT spectrum analyzer. The 
length of the bent ends was varied until w3 was closely equal to 2w2, the final length 
being approximately 8.8 cm. The admittance curve measured is shown in Figure 5 together 
with the admittance calculated for such a bar by using the linear theory and neglecting 
damping. 

The first check for the behaviour described in equation (40) was to shake the bar, at 
a frequency equal to w2, on a node of the third node, and to use a subminiature 
accelerometer positioned at the centre point A of the bar to measure the amount of third 

Frequency (Hz) 

Figure 5. Mechanical admittance at the centre point A of a symmetrically kinked bar (a) as measured, and 
(b) as calculated. 
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mode generated. Positioning of the shaker on this node was to ensure that any w3 
component present as distortion in the shaker output was of negligible consequence to 
the result. It also served ihe purpose of ensufing that the only point “clamped” into 
vibrating at o2 only by the presence of the shaker was a node of 03. 

The result of this measurement is shown in Figure 6 and has the form 

a3 = 25Qa: (43) 

where a3 and a2 are both measured in metres. This agrees with the limiting form of 
equation (42) as t + CO. As will be presently discussed, the bar has a value of 73 equal 
to about 0.25 s so that the coupling coefficient & has a value of about 1000 m-’ s-’ for 
this particular bar. The actual value calculated from the rather involved expression in 
equations (32) and (33) is about 2600 m-’ s-‘. In view of the approximations in the theory, 
this agreement should be regarded as moderately satisfactory. 

044 

0.0 I 

0.1 0.2 0.3 0.4 

Amphtude u, (mm) 

Figure 6. Measured amplitude a, of the third mode as a function of the amplitude a, of the second mode 
for a kinked bar shaken at a node of the third mode. The curve is a3 = const x us. 

The theory was further examined in a second experiment, in which the bar was struck 
with a weighted piano hammer on a node of the third mode, the objective being to excite 
the bar into a vibration that initially excluded this mode and to observe the mode’s 
subsequent amplitude. The vibration signal from a subminiature accelerometer, positioned 
as before at the centre of the bar, was recorded on a Nagra IV tape recorder and later 
analyzed with an appropriate filter to determine the time behaviour of both the second 
and third modes. The analysis showed that the second mode decayed more or less 
exponentially in time with 72 = 0.26 s while the third mode grew from near zero to a 
maximum in a time of order 0.1 s before decaying slowly to zero. A typical trace is shown 
in Figure 7. The peak amplitude reached by the missing third mode, and the time between 
the hammer blow and this peak, were both plotted as functions of a;, the initial amplitude 
of the second mode. These measurements are shown in Figure 8 along with the behaviour 
predicted by theory. 

Figure 9 shows the calculated behaviour of the third mode amplitude when the bar is 
hit so as to make its initial value zero. Comparison with Figure 7 shows that the general 
predictions of the theory are qualitatively similar to the experimental behaviour. 



32 K. A. LEGGE AND N. H. FLETCHER 

Figure 7. Oscilloscope trace of the behaviour of the third mode amplitude with time when a kinked bar is 
excited by a hammer blow close to a node for this mode. Total tracelength is 1 s. 

0.1 0.2 0.3 

Amplitude @(mm) 

Figure 8. Calculated (open circles) and measured (filled circles) dependence of third mode peak amplitude 
(I) and time delay on the initial amplitude a! of the second mode for a kinked bar struck at a node of the third 
mode. 
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Tme (s) 

Figure 9. Calculated behaviour of the third mode amplitude a3 as a function of time for different initial 
amplitudes of the second initial mode excitation (shown as a parameter), with simple linear damping assumed. 

For a more quantitative assessment of the theory one must turn to Figure 8 which 
shows the predicted maximum amplitude and time to reach that amplitude plotted 
alongside the experimental data. It must be noted however that the theory relies on the 
measurement of the decay constants r2 and TV, which were determined in a separate 
free-decay experiment. These in turn rely on there being no interaction between modes 
while these parameters are being measured. While the second mode decayed exponentially 
with time with 72 = 0.26 s, the decay time of the third mode appeared to change with 
amplitude, becoming longer for smaller amplitude. Clearly with several modes present 
on the bar one would expect interaction terms which would affect the apparent damping. 
For the purpose of the above experiment it was considered adequate to take an average 
decay rate of TV = 0.25 s. This approximation may however explain in part the small 
discrepancies between theory and experiment shown in Figures 7-9. 

The approximate agreement in slope and magnitude between the experimental and 
theoretical curves in Figure 8 supports the general correctness of the behaviour described 
by equation (41). The value of p2 implied by the experimental results is about 4000 m-’ s-’ 
which is larger than the calculated value of 2600 m-’ s-l. In view of the behaviour of TV 
this agreement is reasonably good, but the origin of the deviation from the value given 
by the steady state experiment is not clear. 

6. CONCLUSIONS 

The semi-quantitative agreement between theory and experiment gives confidence that 
the major physical mechanisms have been identified which are responsible for mode 
coupling and transfer of energy between harmonically related modes on a symmetrically 
bent bar. While other effects could enter for bars with much more complicated geometry, 
the mechanism examined here can be expected to be present in all cases. Indeed, it is 
tempting to speculate that such a mechanism may be largely responsible for the transfer 
cascades observed in the large-amplitude vibration of symmetrically flanged gongs. 

More generally, mode coupling and energy transfer of this type would be expected to 
occur in all plate-like systems having a sharp kink or crease. Whether or not a significant 
amount of energy is transferred to the higher mode will depend upon the extent to which 
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there is agreement between the frequency of a higher mode and that of the second 
harmonic of some mode that is being driven to large amplitude. 
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