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1. INTRODUCTION

One of the important problems of biophysics is to understand in detail
the mechanisms by which animals produce acoustic signals, and the
ways in which other animals, of the same or different species, detect and
process these signals, through the masking effects of ambient noise, to
extract their information content. At a primitive level this information
relates simply to the presence of the other animal and perhaps to its
proximity and direction. At the next level we find some sort of coding
in the acoustic signal which identifies the species and perhaps the sex,
and finally there is the whole range of information content and emotional
overtone contained in a complex sound like human speech or music.

The auditory chain involved in this process has at least three links of
which we shall discuss here only the first — the acoustical and mechanical
processes by which the various components of the auditory system are
made to vibrate under the influence of an external acoustic pressure
signal, and the characteristics of their response to that signal. The next
link is at the level of neurobiology, and concerns the manner in which
these mechanical vibrations are transduced into nerve impulses, and
the way these impulses are combined into 2 more refined set of signals
to be presented to the animal’s brain. The third link, which is generally
called psychophysics, deals with the way in which the brain itself
processes these signals and relates them back to the original acoustic
stimulus.

The primary acoustical-mechanical link in this chain is in every way
the easiest to deal with. Its analysis is founded on the well-understood
principles of classical physics, and straightforward mathematical tech-
" niques can be used to predict behaviour in a precise quantitative manner.
More than this, all the auditory systems with which we deal are, at this
level, linear, by which remark we imply that the mechanical response to
two acoustic stimuli applied simultaneously is simply the sum of the
responses when each stimulus is applied separately. All these remarks,
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as we shall see later, are only approximately true, but the approximation
is sufficiently good to serve as a starting point which can later be refined.

In contrast, the neurobiological link rests upon biochemical and
biophysical principles which are by no means fully understood. The
response of individual neurons is stochastic and the firing rate is not
simply proportional to the applied stimulus, so that the system is quite
non-linear. In addition there may be correlatory or inhibitory features
in the neural network which further complicate its behaviour.

The psychophysical domain is even further removed from detailed
understanding, and even the principles upon which the human brain
works are in many ways still only guessed at, despite the progress that
has been made.

The sound-producing chain is in many ways similar to the auditory
chain considered in reverse, but with one important difference. The
final link in the chain, which is now the mechanical-acoustical sound
production apparatus, can no longer be treated as though it is strictly
linear. Some of its components, to be sure, do behave in a nearly linear
manner, but there is always at least one highly non-linear element
whose behaviour is responsible, in large measure, for the general
behaviour of the system in terms of sound output and harmonic
structure.

Our purpose in the present review will be to examine, in a general
way, the mechanical and acoustical behaviour of auditory and sound-
producing systems of rather simple types. The methods used are by no
means novel and the physical principles have been understood in detail
since they were first studied systematically by Lord Rayleigh more than
100 years ago. Even the method of electrical network analogies has been
familiar in other branches of acoustics and vibration theory for 50 years.
What does seem to be unfamiliar to most biophysicists is the application
of these methods in quantitative detail to the study: of the acoustic
systems of insects and simple animals, most discussions so far havmg
been qualitative (Michelsen & Nocke, 1974).

The methods are indeed powerful and, once initial difficulties of
comprehension have been overcome, remarkably simple to apply. With
this in mind, the present article is frankly tutorial in nature; our
objective is to show what can be done rather than to describe what has
been done already.
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2. SOUND WAVES

Sound is a propagating pressure disturbance in a compressible medium
and we shall confine the present discussion to sound in air, the problems
of sound propagation and detection in water being similar in nature
but quantitatively very different because of the similarity in density
between water and biological material.

For a general sound wave, the pressure p at a given point is some
complicated function p(z) of the time. We know, however, that we can
represent any function p(f) by the sum of an infinite number of
sinusoidal functions of the form a cos (271f¢ + $) of all possible frequencies
/- We have already said that the auditory systems with which we shall
deal are very nearly linear, unless the pressure amplitude is too large, so
that we are led to examine the behaviour of such a system under the
action of a single pressure component of frequency f. In fact the usual
experimental situation is one in which the sound propagates as a single
plane wave, either in the free air or in an anechoic chamber, so that the
sound pressure p(x, ) at position x and time # can be written

P(x, £) = Py cos [2mf (¢ —x/c)], (1)

where p, is the pressure amplitude and ¢ is the velocity of sound in air
(about 344 m s~* under ordinary conditions). '

For our later analysis it is convenient to make two changes to this
representation. The first is to introduce the angular frequency w defined
by w = 2mf and measured in radians per second rather than hertz. The
second is to introduce complex notation in terms of j = ./—1 and to
write

P(x, 8) = po exp [ju(t—x/c)] (2)

with the interpretation that, though we retain both real and imaginary
parts throughout all our manipulations, we ultimately take the real parts
of all the physical quantities to present their actual values. This use of
the complex exponential function, common in physics and electrical
engineering, avoids the introduction of sine terms similar to (1) or the
use of complicating phase terms. [See, for example, Morse (1948,
pp. 1-17), but note that he uses i = —j so that quantities vary as
e~%? rather than as ef*t.]

In all the subsequent discussion we shall use S.I. units so that pressures
are measured in pascals (1 Pa = 1 N m~2 = 10 dyn cm~2%). When sound
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pressure levels are referred to, they are measured in decibels
relative to the nominal threshold of human hearing, 20 #Pa (r.m.s.).
Because our system is linear, we shall normally calculate its response
for a pressure amplitude of 1 Pa, which corresponds to a sound pressure

level of g1 dB.

3. ELECTRICAL ANALOGIES

Although the anatomy of a typical auditory system is complex, it is not
hard to see that it can usually be represented fairly well by a similar
system with the irregularities smoothed out. Indeed, if the smoothing
process has not been too grossly carried out we should expect the
acoustical behaviour of the idealized model to approximate quite
closely that of the original system. Such a model system will generally
consist of a combination of recognizable elements of which the most
important are the air-filled cavity, the uniform tube, the tapered tube or
horn and the flexible diaphragm. In most auditory systems the neural
transducer (which is where our present analysis stops) is connected to
some form of flexible diaphragm, either directly or through a system of
levers. If, then, we can understand the behaviour of these acoustical and
mechanical elements, we might reasonably hope to understand the
system as a whole.

" The physical and mathematical background for this understanding
was laid by Rayleigh (1896) and is well documented in standard modern
texts (e.g. Morse, 1948; Kinsler & Frey, 1962; Morse & Ingard, 1968).
Fortunately for our present purposes little of this detail is required and
we can treat most of the system elements in a quite elementary way.
Much more important is the interaction between them.

To treat this interaction in a general way we shall make use of the
method of electrical network analogies and, since this is perhaps not
generally familiar, we first set it out in some detail. The references listed
above give an outline of the procedures, and particularly good accounts’
are given by Olson (1957) and, for the mechanical rather than the
acoustical case, by Skudrzyk (1968).

Classical mechanics gives a complete description of the behaviour of
bodies at ordinary speeds. For example, if a body of mass m is acted on

by a force F then :
F = ma = mdu/dt, (3)
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where a is the acceleration and u the velocity of the particle. Similarly
if the force F acts on the end of a spring of modulus %, the displacement
x is given by :
F = kx = kjude, (4)

where we have also written x as the integral of the velocity. Finally if
the force F acts on a viscous liquid flowing through a narrow tube or on
a body being pulled through such a viscous liquid, then

F = ru, (5)

where 7 is the viscous resistance.

If one is familiar with electrical circuits, then these equations
immediately suggest an analogy which turns out to be fruitful. Suppose
we take electrical potential difference E to be the analog of mechanical
force F, and electrical current [ to be the analog of velocity #. Then (3)
is immediately seen to be the analog of the equation

E = LdI/d (6)

where an inductance L appears as the analog of the mass m. Similarly
the analog of (4) is

E=cC f Tds, o

where the electrical capacitance C is the analog of the compliance 21 of
the spring, and the spring displacement x has as its analog the charge on
the capacitor. Finally (5) is nothing more than the simple Ohm’s law

equation
E = RI (8)

These analogies are indicated in Fig. 1.

When we consider acoustical systems, force and velocity are no longer
the most convenient quantities to use for the description. Rather, we
should like to employ pressure p and volume flow U. These are related
to force and velocity simply through the area .S involved, so that

p=F/S, U=uS. ©

If we take p and U as the acoustical analogs of the electrical voltage and
current respectively, then the other analogs can be easily worked out
when we have seen to what acoustical elements they apply.
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m

Fig. 1. Electrical, mechanical and acoustical analogs.

A free piston of mass m and area S sliding smoothly in a short cylinder
is the acoustical analog of inductance and we see immediately that

LeomfS2 (10)

Indeed, even in the absence of a rigid piston, the air in the pipe
(together with that involved in the ‘end correction’ at either end) acts
as a mass-like load with
| L = pl'/S, (10
where p is the density of air and 7, the effective length of the pipe, is
given in terms of its geometrical length I by

" & 1+0:85%, (12)

When L is an acoustical analog, as here, it is often referred to as an
inertance.

The acoustic analog of a spring is a cavity full of air. The acoustic
“compliance of the air in the cavity is, from the analogous relation (7),
simply the flow into the cavity for a small change in external pressure
and, since the bulk modulus of a gas has the value pc?, where p is its
density and ¢ is the velocity of sound, we find

C = V/pc?, (13)

where V is the volume of the cavity.
AcGustic resistance is often provided by a structure such as a fine
mesh cloth. For a given pressure difference across the cloth, the volume

o~
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flow is proportional to area S, so that in this case the acoustic resistance
R varies as S—1.

These acoustical elements are also shown in Fig. 1 along with their
electrical analogs. Note that the electrical analogs are all ‘two-terminal
devices’, which are the simplest kind possible. We shall see later that
certain more complex situations, particularly at high frequencies,
require the use of four-terminal analogs but, before adding this
complication, we shall see what can be done with the apparatus we have
assembled thus far.

4. NETWORK ANALYSIS

In the sort of acoustical system with which we shall deal we are
presented with one or more acoustic pressure inputs to the system and
we want then to calculate the acoustical flows and mechanical motions in
various elements of the system. This leads naturally to the concept of
impedance as the quotient of these two quantities. Using our acoustical
notation in which p is the analog of electrical potential and U the
analog of electrical current, we define the acoustic impedance Z between
a particular pair of input terminals by the relation

Z =/, (14)

where, since the behaviour of the system generally depends on fre-
quency, p and U are small quantities with a particular frequency w.
Since, from (2) for a fixed x, p has a complex form like p, exp [jo(t— )],
where ¢ is a constant, Z will generally be a complex quantity. In fact
we see immediately from the analog equations (6)~(8) that for the case
where the two terminals are those of a simple inertance L, compliance C
or resistance R, the impedance Z at frequency w has the values

Z - Luwj, 1/Cuwj, R (15)

respectively, as we recall from elementary circuit theory. As in electrical
theory, impedances in series can simply be added together. ‘
Also of use for some of our calculations will be the admittance Y,

which is simply the reciprocal of the impedance Z,
Y =271 (16)

Again, as in elementary theory, admittances in parallel can be simply
added together.
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Fig. 2 Section of a general electrical network consisting of impedances Z,z
and generators p, g having the polarities indicated. Mesh currents U,, Up, ...
have been drawn so that at least one current passes through each branch of the
circuit. )

These notions of impedance and admittance apply equally, of course,
to electrical, mechanical and acoustical elements and circuits and indeed
we can often define both a mechanical and an acoustical impedance for
the same physical structure, The units for the different analogs are,
‘however, entirely incompatible and we must be careful not to mix them
in the one calculation unless we know exactly what we are doing.

We shall see in the next section how we go about constructing an
electrical analog network for a given acoustical system. Here we
examine the formalities of solving such a network to find the currents
(acoustic flows) in 2ll its branches so that this technique is available to
us when it is required. :

Fig. 2 shows part of a general network involving a number of
impedances Z,; and a number of externally applied acoustic pressures
Pap- There is nothing special about the geometry, but each of the
pressure generators is labelled with a+ to show in which direction its
pressure is applied. We draw a current loop U,, Up,. . .in each mesh of
the circuit and, for convenience, take these all to flow clockwise unless
the topology of the network makes this impossible. The impedances
common to two meshes are given appropriate subscripts. In drawing
the currents the exact paths are not important as along as at least one

3 QRB I2
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current flows in every link of the network and we have used the minimum
possible number of current loops.

Now concentrate on one mesh of the circuit, say that defined by the
current Uy, We write down the product of each impedance with the
current flowing through it and set this equal to the algebraic sum of the
pressure generators in the mesh. For the particular case illustrated in
Fig. 2 we have ‘

Z (U= U) + ZppUs+ Zp Uy~ U)) + Zps(Us— Us) = Pap—Pps (17)
or, rearranging the terms,
—ZogUp+ (Zopt+ Zgpt Zpy+ Zps) U= Zp Uy = ZgsUs = Pup=2pp (18)

We derive one of these equations for each mesh of the circuit and they
have the general form

Zp U+ ZpUp+ .. +Z1n%=P1’

ZyU+ZpyUp+ ... +Z, U, = Po,
(19)

Zn1U1+Zn2U2+ et ZnnU;z = Pns

where Z,; is the total impedance in mesh 7, Z;; is the impedance linking
it to mesh j (with appropriate sign) and p; is the net driving pressure in
mesh 7. '

A formal solution to these equations that is useful for small meshes
can be obtained in the form

U, = A/A, (20)

where A is the determinant of the matrix Z;; and A, is the determinant
of the matrix obtained by replacing the 7th column by the column vec-
tor p; from the right-hand side. The physical implication of this ‘set
of equations is most easily seen by omitting the common factor exp
(jwt) from all the p; and Uj in(19) and then considering simply the
amplitude and phase of the complex quantity U, given by (20).
Although in physically interesting cases many of the Zj; in (19) are
zero so that the matrix is rather sparse, it is often advisable to use
numerical methods to solve the equation set (1g) rather than simply
evaluating the formal solution (20). Most desk-top computers have
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programs available to perform this task for the relatively small number
of equations (rarely more than 10x 10) encountered in the analysis of
typical biological systems.

Knowledge of the acoustic currents Uj, either from (20) or from
a numerical solution using a computer, tells us all we need to know about
the system, for from them we can deduce directly the amplitudes and
phases of the motion of its mechanical parts together with the pressures
in all of its cavities. The main part of this exposition will show how this
is done.

5. LOW-FREQUENCY AUDITORY SYSTEMS

The simplest auditory systems to analyse are those in which all the
system dimensions are less than about one tenth of the sound wave-
length considered, for in such cases simple two-terminal electrical
analogs suffice to a good degree of approximation. In this section,
therefore, we examine the behaviour of several typical systems in this
approximation, with the dual aims of seeing how the analog networks

are constructed and analyzed, and of understanding several biologically

important cases. The techniques, and indeed the systems themselves, are
all closely similar to those employed in various types of microphones
(Olson, 1957, pp. 246-339), a circumstance which should perhaps not
surprise us.

(a) The diaphragm

An important element of most auditory systems is a tympanum or
diaphragm blocking off one of the tubes or cavities, and it is very often
the motion of this diaphragm which is conveyed to the neural trans-
duction mechanism. We therefote consider first the behaviour of such
a diaphragm, set in an infinite baffle as in Fig. 3(a); when one of its
surfaces is exposed to an acoustic pressure field of amplitude p and
angular frequency . The diaphragm then vibrates backwards and
forwards about its flat position as a smoothly bell-shaped surface
whose form is related to the zeroth-order Bessel function.

The diaphragm has both mass and stiffness and resists motion under
the applied pressure for both these reasons. In addition all materials,
and biological materials in particular, have internal losses which are
often of viscous type and which become apparent when they are strained
elastically. The total acoustic impedance Z of the diaphragm thus has

3-2
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Fig. 3. (@) The mechanical configuration and (b) the analog electrical network
representation for a flexible diaphragm surrounded by a baffle and acted
upon by an acoustic pressure on one side. In the analog circuit, L, represents

the diaphragm mass, C, its elastic compliance and R viscous losses within its
material.

an inertance L, a compliance C and a resistance R in series as shown in
the analog circuit of Fig. 3(b), and, from (15)

Z = Loj+(1/Cuwj)+R. (21)
If the area of the diaphragm is S, its thickness d and the density of its
material pg, then, because the diaphragm flexes rather than moving as

a rigid piston, the result (10) is modified by a factor closely equal to
4/3 (Morse, 1948, p. 202) so that
L ~ 4ppd[3S. : (22)

The effective compliance C of the diaphragm depends on its stiffness
and the tension under which it is held, and R similarly depends on these
parameters and upon the material of the diaphragm. Although both C
and R could be determined from a sufficient knowledge of these
quantities, there is fortunately an easier way by which to proceed.

The circuit of Fig. 3(b) is known as a series resonant circuit and, if we
write the acoustic volume current as U exp (jwt), then from (14) or
equivalently from (17),

, U = p/Z = p/[R+jLw—1/Co)]. (23)

Since we are not concerned with phase but only with amplitude, we
can take the absolute value to get

|U| = [pl/[R?*+(Lo—1/Cw)E. (24)

This expression, which is known as a resonance curve, is plotted in

Fig. 4(a). The velocity response is a maximum at the resonance

frequency w* given by w* = (LC)-L. (25)
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Fig. 4. Response in terms of (a) acoustic flow U, and (b) average displacement
% for the membrane of Fig 3 considered as a series resonant circuit. Q is the
quality factor of the resonance, shown as a parameter in (b).

The height of the peak is simply p/R and the width of the peak between
two points at 1/ 2% of its peak height is @*/Q, where Q, which is called
the quality factor of the resonance, is given by

0 = Lo¥/R. " (26)

To relate the acoustic flow U exp (jo¥) to a more useful quantity, the
average displacement amplitude ¥ of the diaphragm, we note that, when
only magnitudes are considered,

x=U/wS (27)

so that & has the form shown in Fig. 4(b) as a function of frequency.
Provided Q is greater than unity, which is usually the case, the peak in
% is very nearly at the resonance frequency w* and the displacement
amplitude at resonance is very nearly Q times the low-frequency
displacement amplitude pC/S = p/LSw*2.
A more sophisticated discussion of the behaviour of a diaphragm
(e.g. Morse, 1948, pp. 172-213) shows that it has an infinite number of
resonant vibration modes of which the one we have considered is the
lowest-frequency or fundamental mode. In fact the non-symmetrical
higher modes of a circular or elliptic membrane cannot be excited by
a simple acoustic pressure, and even the second symmetrical mode,
whose frequency is between two and three times that of the funda-
mental depending upon the stiffness of the diaphragm, couples rather
‘inefficiently to the sound wave. For our present purposes we can there-
fore neglect these higher vibration modes.
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Fig. 5. (@) A simple omni-directional ear consisting of a thin tympanum over
a closed cavity V. (b) The analog electrical circuit; Ly, Czand Ry refer to the
bare tympanum and Cy to the enclosed air volume.

(b) The simplest ear

Perhaps the simplest ear of which we can conceive consists of
a tympanum or diaphragm closing an air-filled cavity as shown in
Fig. 5(a), the diaphragm being flush with the outside of the animal’s
body. Since part of the external pressure is supported by the diaphragm
and part by the resilience of the air in the cavity, the analog circuit is as
shown in Fig. 5(b). If the diaphragm is defined by its area S, thickness
d, bare resonance frequency w¥ and Q value and if the cavity volume
is 7, then the response peak of the whole ear is at the resonance frequency

w* = wi(1+Crp/ Cy)t, (28)

where Cj is given by (13) and Cy by (22) and (25). Clearly the extra
resilience contributed by the enclosed air raises the resonance frequency
so that @* > w#, and this frequency shift is large if the cavity volume,
and hence Cy, is small.

From our discussion of the simple diaphragm, the low-frequency
displacement response is

&y = p/LpSw* ~ p/ppdv*® (29)

and the resonant response is O times this value, as in Fig. 5().

The performance of such an ear, which is essentially identical to
a simple condenser microphone, can be optimized in various ways. If
Q is made close to unity, for example by deposition of lossy material
around the edge of the diaphragm, or by filling the cavity with fibrous
material, then the response can be made essentially uniform from low
frequencies up to an upper limit near o*. The actual response, from
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(29), varies, however, as w*-2, so that the product (gain) x (bandwidth)?
remains constant as the tension of the membrane or the size of the cavity
is varied to change w*.

Another possibility, which is more likely for a simple ear, is to
optimize auditory sensitivity, and thus signal-to-noise ratio, at a par-
ticular frequency corresponding to a mating call or the cry of a predator.
In this case w* is set to the desired frequency and Q) is made as large
as possible. The limit for biological material is probably not much
more than 10 for O, which represents a 20 dB improvement in threshold
near w* and a 3 dB frequency discrimination bandwidth of o-1w*.
Much finer frequency selectivity than this is achieved by many animals
with quite simple ears, but this must be as a result of further signal
processing at a neural level. A sharply tuned neural transducer, if such a
thing exists, would effectively multiply the O of the basic resonance, but
it seems likely that the real mechanism is more sophisticated than this.

Finally, we note from (29) that & increases as the diaphragm thickness
4 is decreased. There is, however, a limit to what can be done in this
direction, not only because the diaphragm must be strong enough to
resist mechanical damage, but also because d is really an effective
thickness which takes into account the moving mass of the neural
transduction apparatus connected to the tympanum. This mass, and its
associated losses which tend to reduce O, cannot be made negligibly
small, so that there is a limit below which d cannot reasonably be reduced
even for very small and suitably protected ears. Note that the area S of
the tympanum does not enter directly into the final expression in (29)
but is important indirectly because of the interdependence of w7, d and
S for a diaphragm of stiff biological material.

To gain some idea of the magnitudes involved for a typical insect in
a sound pressure field of 1 Pa, we note pp & 1 kg m~3 and typically
d ~ 10 ym, w* ~ 10* rad s~* so that & ~ 1 gm. These values can, of
course, vary quite considerably.

Finally we note that, provided the tympanum is small in diameter
compared with the sound wavelength involved, this ear is completely
non-directional and it is usual to say that it has an acoustic pressure
response.

(¢) A bi-directional ear

The next form of ear to be considered consists of a diaphragm open to
the influence of sound pressure on both sides, as shown in theidealization
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Fig. 6. (a) This idealized bi-directional ear consists of a tympanum mounted
centrally in a short pipe. The direction 6 of sound incidence is shown. (b) The
electrical analog network; Zr is the tympanum impedance and Lp the
inertance of one of the half-lengths of pipe.

of Fig. 6(a). No biological examples having the exact symmetry of
Fig. 6(a) are known but there are less symmetrical examples which
operate on similar principles. This system has two ports through which
sound pressures p; and p, act. If we take the centre of the system as
geometrical reference and suppose that a plane sound wave arrives from
a direction @ as shown, then from (2) we have
p1 = pexp [jt+(l/c) cos O)), (30)
£y = p exp Ljoft—=(1/<) cos O)] G
Once again the inertances L, = pl|S of the two pipe sections are
acoustically in series with the diaphragm impedance Zy, as shown in
Fig. 6(b), and the driving pressures p; and p, act in opposition to give
a net forcing pressure p; —po.
The network of Fig. 6(b) is again trivially simple to solve and we find

U = p(e®— e ) /(Zp+2Lp7), (32)
where we have dropped the factor e from U and p and have written
8 = (wlfc) cos 0. (33) -

Since & < 1 because the auditory system is small compared with the
sound wavelength, (e/ —e~%) & 278 so that, taking absolute values,

|U| = 2|p cos 6)(lfe)[Re+ (Lpw +2L,0— 1/Cpw)?]t (34)

and again the diaphragm displacement ¥ can be found by dividing by
wS, as specified by (27).
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Fig. 7. (a) The frequency response and (b) the directional response of the
simple bi-directional ear of Fig. 6. No units are given since this ear is not
biologically realistic.

For any given angle 6, the displacement response & has a resonance
curve like that shown in Fig. 7(a), going to zero at both low and high
frequencies and with a peak at

0* = [Cr(Lp+2L,)] (35)

which is a somewhat lower frequency than that of the bare tympanum
resonance, because of the mass load of the air in the tubes.

The important thing about this analysis is the angular variation of
the response, which behaves like [cos 8], giving the figure-8; patterns
shown in Fig. 7(b). The basic reason for this behaviour is easily appreci-
ated for the diaphragm responds to the difference in pressure acting on
its two surfaces and thus to the gradient of acoustic pressure, or acoustic
phase shift, along the length of the tube. Any ear which has ports allow-
ing very nearly equal entry of acoustic pressure to each side of a dia-
phragm will behave in a rather similar manner.

(d) A directional ear

The essential feature leading to directionality in the ear considered in
the previous section was the existence of two sound ports. This feature
must always be present in directional auditory systems whose overall
“dimensions are small compared with the sound wavelength involved.
In the present section we discuss an ear with a unidirectional response
characteristic and which is in many ways an elementary prototype for all
the more complex auditory systems to follow.

Fig. 8(a) shows the essential features of the system which is similar
to the primitive pressure-response ear of Fig. 5(a) except for the
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Fig. 8. (@) A simple directional ear consisting of a tympanum closing a cavity
which possesses an additional venting port. The direction 6 of sound incidence
shown. (b) The electrical analog network; Zr is the impedance of the
tympanum, Zp that of the port and Zy that of the cavity. p; and p, are
external acoustic pressures at the tympanum and port; Uy and U, are acoustic
volume flows through tympanum and port respectively.

presence of an additional constricted port. Two pressures, p; and p,,
given once again by (30) and (31), act on the outside of the diaphragm
and at the entry to the second port respectively.

Construction of the analog network for the system, as shown in
Fig. (8b), involves the observation that both ports allow acoustic
pressure to enter the cavity and that the prime function of the cavity
is as an acoustically compliant reservoir rather than as a pipe connecting
the two ports. In fact these two aspects must both be taken into account
when the cavity dimensions are no longer small compared with the
sound wavelength, as we shall see later. The network now has the two-
mesh form shown and, to simplify the algebra, we denote by Z the
impedance of the tympanum, by Zj that of the cavity, and by Zp that of
the second port which can be represented as an inertance and a resistance
in series. This inertance is provided by the port itself and the resistance
either by the narrow dirensions of the port or by obstructions within it.

Following the methods outlined in section 4 above we arrive at the
appropriate special case of the system of equations (19) in the form

Er+Z)U—ZyUz = Py _
= ZyU+ (Pp+ Zy)Us = —Po- (39
We are concerned with the motion of the diaphragm and hence with

U, which from (20) is given by

Pi(Zp+Zy)—boZy

= UrtZy) Cot Z9) -2 (37)

U,
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Tig. 9. (@) Frequency response for ipsilateral (I) and contralateral (C) stimu-
lation, and (b) directional response for the left ear at 10 and 15 kHz of the
auditory system of Fig. 8 as calculated using the parameters in Table 1 for
a sound pressure level of g1 dB.

Using (30), (31) and (33) we find, to first order in §,

_ PZp+(Zp+2Zy)jwlcos 0/c]

U ~
! ZyZp+Zy(Zp+Zp) (38)

Tt is clear that, in a general way, the angular response pattern is deter-
mined by the numerator while the frequency response has peaks near
the minima of the denominator.

If we write Zp = Lpwj+ Rp and Z, = 1/Cpoj in the numerator of
(30) then it takes the form -

[Rp+(2/Cp—Lpw?) I cos 6/c]+jo[Lp+Rplcos 0/cl. (39)

The behaviour of this expression depends on the values of the par-
ameters involved but if @ is small so that Lpw? € 2/Cy and the second
term of (39) is much smaller than the first, then an approximate null can
be obtained for sound incident from the direction of the port (¢ = 180°)

i Ry = 21/cCy. V (40)

The response is then maximal for § = oand the ear is usefully directional.

To give an indication of the complete performance of an auditory
system with this configuration, which is not unlike that used in some
directional condenser microphones, we show in Fig. 9(«) the frequency
response for § = o and 180° and in Fig. 9(b) the polar response at
several frequencies for an ear having the physical parameters given in
Table 1. These are chosen to be of reasonable magnitude for the ear of
a small insect, though perhaps no ear with just this configuration has
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TABLE 1. Assumed parameters for directional ear

Tympanum area Sp = 1075 m?
Tympanum thickness d = 100 um
Tympanum resonance wk/am = 1500 Hz
Tympanum Q value. Q=35

Cavity volume V =4x10""m?
Port area S, = 1075 m?

Port resistance R=2x10"Pasm™®
Port separation 2]/ = 20 mm

Port length I, = 3mm

evolved. Once again we have calculated the average displacement
amplitude # of the tympanum using (27), and the accurate result (37) is
used rather than the approximate form (38).

From Fig. 9(a) we see that the response for the ear is peaked near the
resonance frequency of the diaphragm and that the response falls to
zero at low frequencies rather than remaining finite as in the simple
pressure-response ear. The frequency , below which this fall-off
becomes pronounced is determined by the transmission of acoustic
pressure to the cavity through the port, and is given by

wy % 1/RpCr. (41)

The height of the resonance peak is determined largely by the Q value
of the diaphragm but is reduced somewhat by losses in the port
resistance.

From Fig. 9(b) we see that the polar response curve is cardioid in
shape with a reasonably sharp null for sound coming from the direction
of the port and a broad maximum for sound falling directly upon the
tympanum. This is a useful directionality for biological purposes, but
it is clear that the animal can locate a sound source only by moving
a single ear or by using more sophisticated neural processing and an
array of two or more ears. _

In many ways this directional ear can be considered as a combination
of the omnidirectional ear of Fig. 5 with the figure-8 response of the
pressure-gradient ear of Fig. 6. Indeed, if the portis made small so that
the value of Rp is much larger than the value given by (40), the present
ear shows an omnidirectional response while, if the port is large so that
Rp is much smaller than the value given by (40), the response is of
figure-8 form. The optimum Rp value effectively adjusts these two types




Analysis of acoustical systems in biology 45

P2

3
®+

&
B
Q)

)

Fig. 10. (@) A simple coupled ear pair consisting of two identical tympana
communicating with a closed cavity. (5) The electrical analog network; Zp is
the tympanum impedance and Zy that of the cavity.

of response to comparable magnitude so that for sound from the front
of the ear the two motions add while for sound from the direction of the
port they tend to cancel.

Another way of viewing the behaviour, which is in fact more generally
applicable, is to note that the combination of a port and cavity introduces
a phase shift in the wave reaching the inside of the diaphragm. By
appropriate adjustment of port, resistance and cavity size this phase
shift tends to make the phases of internal and external pressure similar
for sound from the direction of the port, leading to minimal diaphragm
motion. For sound from other directions the phase relations are differ-
ent and the pressure difference across the diaphragm is greater, giving
more movement.

(e) Two coupled ears

Most animals have bilateral symmetry and one or more pairs of ears
which interact acoustically with one another through a system of
cavities, tubes and septa. If the central septum is thick and heavy, the
“two ears of a pair are effectively isolated and can be treated separately,
though their outputs may be combined at a higher neural level. If
the central septum is thin or non-existent, then direct acoustical inter-
action between the two ears may have a dominant effect on their
response.

_As the simplest example consider a pair of ears consisting of two
tympana coupled to a common cavity as shown in Fig. 10(a). The
analog circuit shown in Fig. 1o(b) is similar to that of Fig. 8(b) but
exhibits the bilateral symmetry of the acoustical system. The acoustic
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Fig. 11. (a) Frequency response for ipsilateral (I) and contralateral (C) stimu-~
lation, and (b) directional response for the left ear at 1-0 and 17 kHz of the
auditory system of Fig. 1o as calculated using the parameters in Table 2 for
a sound pressure level of g1 dB.

current U, through the left ear for sound incident at an angle 0 as shown
is given, by analogy with (37), by

(Zp+Zy)—poly
ZZat22y) (42)

U'l__:pl

where Z, and Z, are the acoustic impedances of the tympanum and
cavity respectively.

The response Uj has two maxima, one at the frequency for which Zp
is 2 minimum and one at the frequency for which Z; + 2Z; isa minimum.
These correspond respectively to a mode in which the tympana move
in the same direction (one in and one out, giving no compression of the
air in the cavity) and a mode in which the tympana move in antiphase.
The first mode is driven by the pressure gradient and the second by the
average pressure, the resonance for the second mode always being at
a rather higher frequency than that for the first, though often they
overlap substantially.

The precise behaviour of the system can be found by evaluating (42)
using (30) and (31) for p; and p, but we can easily see the general
outline by approximate evaluation of (42) for particular situations. Thus;
at frequencies well below the tympanum resonance, Z 5 behaves like
a compliance 1/Cqwj, py = p1 and

U, - p/(Zg+2Z7) = puCsCr/(Cy + 2Cr) (43)

50 that the tympanum displacement ¥ = U;/wSy becomes constant and
independent of sound direction.
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TABLE 2. Assumed parameters for simple ear pair

Tympanum area Sp = 107 m?
Tympanum thickness . d = 100 gm
Tympanum resonance wh/2m = 1500 Hz
Tympanum Q value Q=4

Cavity volume V =35%x107"md
Separation of ears 2] = zomm

At the tympanum resonance, on the other hand, Z, = Ry and the
numerator of (42) becomes, to first order,

P[RR+ (21fcCy) cos 8 +j(wlRy/c) cos b]. (44)

The real part of this expression can be made to vanish for contralateral
stimulation (8 = 180°) if R, = 2//cCy and the response for this angle
is then much smaller than that for ipsilateral stimulation (¢ = o). It is
not possible to achieve an exact null for 6 = 180° and indeed optimum
cancellation occurs at a frequency slightly below the tympanum
resonance.

Finally, at high frequencies Z, becomes large and inductive and both
U, and & fall asymptotically to zero. Fig. 11(a) shows the calculated
frequency response for ipsilateral (I) and contralateral (C) stimulation
for an auditory system having the detailed parameters shown in Table 2.
Fig. 11(b) shows the polar response, which is seen to be cardioid near
the frequency of maximum sensitivity and more nearly circular at
higher and lower frequencies. For the particular system calculated, the
tympanum thickness and Q value were chosen to give good direction-
ality, since such optimization is certainly possible during the evolutionary
development of the auditory system in real animals.

(f) Multi-port systems

“The twin-ear system discussed above can be further generalized by the
addition of further sound-entry ports, which might be physically
realized in the form of nares or spiracles or by secondary tympana
communicating with the central cavity. Another possible complication
is the existence of a central septum as we have previously mentioned.

Fig. 12(a) shows such a system with two closely spaced nostrils
entering a cavity with which the tympana also communicate, an example
with minor complications being the auditory system of the frog. Since
the nares are closely spaced they can be lumped together, giving the
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Fig. 12 (@) The auditory system of a frog-like animal. T'wo tympana and two
closely spaced nares communicate with an otherwise closed mouth cavity.
(b) The analog network for this auditory system. The two nares have been
replaced by a single impedance because of their close spacing.

slightly simplified network shown in Fig. 12(b), which has just three
meshes. A rather similar though unrelated system is that of the male
cicada Cystosoma saundersii (Westwood) discussed by Fletcher & Hill
(1978), in which case the third input is through the resonant abdominal
shell rather than through the nares.

Without going into details of the solution of the frog-like system, we
note that, because the inlet to the nares is placed forward of the tympana,
the auditory system has some degree of frontal directionality in addition
to the lateral directionality conferred by the paired tympana, the nares-
tympana system operating rather like the simple directional system of
Fig. 8. With the simple system illustrated, the response is always
greatest in the rear ipsilateral quadrant so that the directions of approxi-
mate null are in frontal quadrants. This may not give the animal optimal
hearing acuity but does give optimal directional information when the
responses of the two ears are compared neurally.

To illustrate this behaviour Fig. 13 shows calculated frequency
response and directionality for a frog-like auditory system having the
physical parameters given in Table 3.

6. PIPES, HORNS AND LEVERS

We now introduce a more complex type of acoustical element which
requires for its representation a four-terminal electrical analog. This is
true of virtually all structures whose dimensions are comparable with
the sound wavelength involved and is also a necessity for certain other
structures, such as horns and levers, at all frequencies.
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Fig. 13. (@) Frequency response for ipsilateral () and contralateral (C) stimu-
lation, and (b) directional response for the left ear at 170 and 1°5 kHz of the
frog-like auditory system shown in Fig. 12. System parameters are given in
Table 3 and the sound pressure level is g1 dB. Note that the maximum
response is in the rear ipsilateral quadrant.

TABLE 3. Assumed parameters for frog-like system

Tympanum area Sp = 107%m?
Tympanum thickness d = 100 um
Tympanum resonance wh/2m = 13500 Hz
Tympanum Q value Q=

Cavity volume V = 10~ m?

Total nares cross-section Sy = 1075 m?

Nares length Iy = 1mm

Nares resistance Ry = 5X10Pasm™
Separation of ears 2l = 20 mm
Forward distance of nares I/ = 1omm

(a) Pipes

As the first component to be considered, let us take a cylindrical pipe of
radius a, cross-section S = 7a? and length /. Such a tube has two inlet
ports, one at each end, and it is clear that a pressure signal applied at one
port may appear in modified form at the second port because of transit
time delays and transmission losses in the tube. To analyse this situation’
we use pressures and acoustic currents as defined in Fig. 14 and write

P = Zyy Uy —Z35Us, (45)

Py = —ZgyUy + ZosUs. (46)

Note that both U, and U, flow clockwise and that the senses of p; and p,
aré opposite. (Equations (45) and (46) differ from the form often used

4 QRB I2
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Fig. 14. Definition of the senses of pressures and currents for a 4-pole network
analog.

in electrical engineering because of the minus signs given to Zj, and
Z,, but this simplifies our subsequent discussion.)

Explicit determination of the impedance coefficients Z;; involves
consideration of acoustic waves propagating in both directions along
the pipe. Since each wave is attenuated by wall losses if the pipe is
narrow (as is usually the case in biological systems) we must generalize
(2) and write, for a wave propagating in the +x direction in the pipe,

(%, £) = po exp (—owx) exp [jo(t—x/c)]; (47)
where « is the attenuation coefficient and ¢’ which is less than ¢, is the
speed of sound of frequency o inside the tube.

The propagation of such attenuated waves in pipes has been sum-
marized in an article by Benade (1968). In general terms, ¢’ X ¢
provided wa? > 2x 107 m? s7' but for narrower tubes or lower
frequencies ¢’ varies in proportion to w?a. The attentuation coefficient o
varies roughly as w# a-? at all frequencies though there is a shift in the
proportionality constant of about a factor 2 near wa? ® 2% 1075 m?s7L,
Details of this behaviour for frequencies and tube sizes of biological
interest are shown in Fig. 15. The attenuation in the tracheae of the
acoustical systems of insects, which are often less than 100 gm in
diameter and several millimetres long, will generally be quite appreciable
and may be large. _

To evaluate the Z;; of (45) and (46) is a little complicated and the final
results are given in a rather different form in most texts (e.g. Morse
(1948), pp. 233-65; Olson (1957), Pp- 106—108; Slater (1942), pp. 7—42).
If we write f = w/c’ in (47) so that .

Y = a+jf = atjo/d - 48
is a sort of complex propagation constant, then it can be shown that
Zyy = Zy ® (pe/S) coth 7, (49)

Zyy = Zy = (pc/S) cosech 7, (50)




Analysis of acoustical systems in biology 51

500

100

¢ (ms™)

50

5 10 50 100 500
Tube radius a (um)

Fig. 15. The phase velocity ¢’ and attenuation coefficient o for propagation of
sound of given frequency (shown in kilohertz as a parameter) through a tube
of radius @. The plotted results refer to a tube with smooth rigid walls; any
deviation from this assumption will affect both ¢’ and «.

the approximation involving the factor pc/sS, which should really have
a small imaginary part as well. The properties of these complex hyper-
bolic functions are summarized in the Appendix. It is interesting to
"note that if the tube is short so that yI < 1, then clearly all the Z; are
nearly equal and, if in addition the tube is wide enough that o' < f,
then Z ;= pe/?Slw which is just the two-terminal impedance of a
simple cavity with volume V' = SI.

The relations (43), (46), (49) and (50) are easily seen to contain all
the familiar information about the resonances of open and closed pipes
one half or one quarter of a wavelength long but to generalize this to the
discussion of lossy pipes of arbitrary length. For example, if the pipe is
open at end 2 so that p, ~ o, then from (45) and (46) we find for the
input impedance at end 1 )

Zor = to/Us = (p¢/S) tanh ol > Gipe/S) n wlfe,  (57)

where the final form is appropriate-if the attenuation c becomes zero.
In this case the impedance of the pipe is nearly purely reactive and
becomes small, which is the sounding condition for a flute-like instru-
ment, if wl/c = n and the pipe is an integral number of half wavelengths
long. Z,, becomes large, which is the sounding condition for a clarinet-
like instrument, if wl/c = (2n+1)7/2 and the pipe length is an odd
number of quarter wavelengths.
4-2
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(b) Horns

The acoustics of horns is a good deal more complex than that of simple
pipes but is treated in essentially the same way (Morse (1948), pp. 265
88; Olson (1957), pp. 100-115). We shall content ourselves with out-
lining the essential physics of the situation and giving some approximate
results of accuracy sufficient for our present purposes.

A biological horn may be of quite complex shape but fortunately the
general behaviour does not depend critically upon shape for the cases
with which we shall deal. Mathematically simple horns include those in
which the cross section S(#) at co-ordinate x along the horn varies either
as x? (a conical horn), #™ (a Bessel horn), e™® (an exponential horn) or
cosh? (3mx) (a hyperbolic or catenoidal horn). Most biological horns are
not too far from exponential in shape and, since this is algebraically the
simplest case to treat, we shall base our discussion upon it.

Acoustic waves will propagate inside an infinite horn provided its rate
of flare (as measured by the parameter m for an exponential horn) is not
too large. For frequencies below that for-which the horn cross-section S
changes by more than a factor e over a distance A/47, where A is the
sound wavelength, waves cannot propagate along the horn, though the
enclosed air does vibrate all in phase and with an amplitude that is
exponentially attenuated along the horn. This flare cut-off frequency
w, is defined by ©, = mc/a.  (s2)
Conical horns do not show this sharp cut-off behaviour but their
propagation characteristics deteriorate rapidly below a similar frequency
which depends on the cone angle. If the horn is very short then this
low-frequency attenuation may not be significant, but to obtain the
desired action of a horn as an impedance transformer, and thus as
a collector of sound energy in auditory systems, it is generally desirable
that it operate above its cut-off frequency.

From the general expression given by Olson (1957, pp. 108-9) we can
derive the four-pole impedance parameters Z;; for the particular case of -
a lossless exponential horn with flare parameter #, length [ and end
cross-sections S; and S,. Clearly

m = -1 In (S3/Sy), (53)

which allows us to determine the cut-off frequency from (52). Provided
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the horn is operated well above its cut-off frequency then we have the
simple approximate results

Zy ~ (pe/Sy) coth @+jwlfc) (i =1,2) (54)

Zyy = Zyy % [pec/(S1Sy)*] cosech (@+jwl/c), (55)
where & is an average value of the wave attenuation caused by wall loss
along the horn. Because of its flaring shape, the value of @ is usually not
large but it is important in some cases that it not be taken to be zero, or
resonant peaks of unreasonable heights may result.

From the form of (54) above it can be seen that a horn acts firstly as
an impedance transformer, since Zy,/Zp, = 5,/S;, and secondly as
a resonant tube of length I with its resonances and anti-resonances
determined by the factor cot (w//c). Because the tube or diaphragm at
the narrow end of a horn is generally of high acoustic impedance, while
the free air presents a low acoustic impedance to the open end of the
horn, its presence may thus aid very significantly in improving the
response of the system, though with a significant expenditure of space
either within the animal or in the form of external horns. For a high
diaphragm impedance the pressure gain is essentially (Sg/ St If in
addition the horn is an odd number of quarter wavelengths long, a further
significant increase in acoustic pressure at its throat can be achieved.
Such horns, with or without the resonance feature, are a common com-
ponent of auditory and vocal systems. Because of flare cut off, however,
the pressure gain that can be achieved is limited to about 10 dB unless
the horn is extended to an external pinna of large size.

Another aspect of horn behaviour which is sometimes important in
auditory or sound production systems is the directionality conferred by
the action of the horn itself, irrespective of the existence of any other
ports in the system. Such directionality is reciprocal, in the sense that
the polar pattern of the horn used as a sound generator coupling is the
‘same as when it is used as an auditory system coupling. Directionality
becomes appreciable only when the radius of the open end of the horn
exceeds about one fifth of the sound wavelength involved, which is also
the condition for the disappearance of resonances in the horn. For
higher frequencies the horn becomes increasingly directional, receiving
or directing sound preferentially along a direction normal to the plane
of its open end which, for a bent horn, may not coincide with its axis.
This directionality becomes pronounced if the horn radius exceeds half
the sound wavelength.
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Fig. 16. (a) Physical configuration and () network analog for a simple

lever. L, and L, represent the masses and C; and C,the elastic compliances of
the lever arms. The transformer is assumed to be ideal, with ny/ny = lafli.

If an auditory-system horn is operated well below its cut-off fre-
quency (i.e. if its flare rate is very rapid) then essentially all |Z;;] = 1 so
that there is no transformer action but only a transmission phase shift
for a plane wave impinging on the horn.

(¢) Levers

The lever is a mechanical rather than an acoustical device and commonly
occurs in auditory systems as a link between the moving tympanum
and the auditory capsule containing the neural transducers. In order to
treat its action we must first deduce, from the motion of the tympanum,
the force that it is capable of exerting on one arm of the lever. We then
treat the lever itself and the remainder of the system in terms of mech-
anical rather than acoustical impedances.

The mechanical arrangement of a simple lever is shown in Fig. 16(a);
note that in a general case I, might be negative so that the force Fy is
applied on the same side of the fulerum as F,. An approximate four-
terminal network for a real lever is shown in Fig. 16(). L, and L,
represent the masses, or rather the moments of inertia, of the two lever
arms and C, and C, their springy compliances. Inanideal lever these four
quantities would be zero. The ideal transformer connecting the two
ports of the circuit has a turns ratio

m/ny = L/hL (56)

and, in order that the transformer should respond to static forces, both
n, and 7, must approach infinity, giving an infinite inductance to the
open-circuited transformer. The ideal transformer that is the central
part of the analog network has ‘

Zy = pniwj, Zgp = pniwj, Zyg = Ly = pngnaw] (s7)
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in the limit # — co. Note that if the sign of /, and hence 7, is changed by
moving the fulcrum, then the signs of Z;, and Z,; are also changed.

In an auditory system, as we have said, a lever system is often used
to connect the tympanum to the auditory capsule. The capsule itself has
a mechanical impedance which is determined by the size, number and
elastic properties of its constituent cells and the substrate on which they
are supported. These cells presumably have a firing threshold for some
particular elastic distortion and a distribution of firing thresholds allows
a discrimination of stimulus level. The use of an appropriate lever
allows optimal matching of the mechanical impedance of the tympanum
to that of the auditory capsule.

7. HiGH-FREQUENCY AUDITORY SYSTEMS

The analysis of high-frequency auditory systems follows along exactly
the same lines discussed for low-frequency systems in section 5 above.
The best way to make this clear, while at the same time gaining insight
into several typical real auditory systems, is to discuss some simple
systems in detail.

(a) Simple doublet tube ear

The simplest possible high-frequency ear with bilateral symmetry
consists of two tympana connected by a straight narrow tube as in
Fig. 16(a). The electrical analog circuit is given in Fig. 16(b), with Z;;
being the four-pole network for a narrow tube, as defined in (49) and
(50), and Z,, being the tympanum impedance given by (21). The net-
work equations are

(Zr+ le)Ul — 25U, = py, } (58)
—Z3Us+(Zp+ Zpg)Uz = =D
with py, p, given by (30) and (31). The solution for ear 1 is
2Zp+Zn)—PeZis
U, = CE)
! (Zp+Zyu)—2Zy° (59)

where we have used the facts that Z,, = Z,, and, for a cylindrical pipe,
Zn = Zss.
The behaviour of this system is particularly simple if the tympana are
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Fig. 17. (@) Physical configuration and () network analog for a simple doublet
auditory system in which two tympana are coupled by a narrow tube. Zp is
the tympanum impedance and the 4-pole Z; represents the tube.

extremely light (much lighter than would be possible in practice) so
that Z; < Z,; and if the tube length is just one quarter of a wavelength
so that wl/c = 7/2. If we calculate the displacement of tympanum 1 at
this frequency for ipsilateral (¢ = o) and contralateral (6 = 180°)
stimulation, then we find, using the results in Appendix A,

% = (p/pcw) sech al (sinh al+ 1), (60)

where the plus sign refers to the ipsilateral and minus to the contra-
lateral case. Clearly if the attenuation coefficient « in the tube is of such
a magnitude that sinh «l = 1, then there is exact cancellation for
contralateral sound at this frequency. For typical insect songs with
@ ~ 10% to 10° rads and [ ~ 1o mm this requires a tube about
100 um in diameter, which is close to the dimensions found.

This special case cannot serve, however, as the description of any real
system becausé, though the behaviour is reasonable at other frequencies
as shown in Fig. 18, the tympanum displacement clearly diverges at very
low frequencies. To remedy this defect we must return to (59) and
retain a finite impedance for the tympanum. This has been done in
Fig. 19, which displays the results of a calculation for a typical case
using the physical parameters shown in Table 4. The response shows
a sharp peak near the tympanum resonance, and exact cancellation can be -
achieved for contralateral stimulation through an appropriate choice of
the Q value of the tympana and the attenuation coefficient in the tube.
The directional response has an approximately cardoid form.

There is, in fact, a fair measure of freedom in the selection of
parameters for such a system, and the attenuation necessary for
directionality can be shared in an arbitrary fashion between the tube and
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Fig. 18. (@) Frequency response for ipsilateral (I) and contralateral (C) stimu-
Jation, and (b) polar response for the left ear at 3-0 and 4-0 kHz of a tube-
coupled doublet auditory system, as in Fig. 17, for the case where the tympana
have negligible mass. Tube length is 20 mm, attenuation coefficient
o = 44m™tand sound pressure level is 91 dB.
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Fig. 19. (@) Frequency response for ipsilateral (I) and contralateral (C) stimu-
lation, and (b) polar response for the left ear at 3-0 and 4-0 kHz of a tube-
coupled doublet auditory system for the realistic parameter values given in
Table 4. The assumed sound pressure level is 91 dB.

TABLE 4. Assumed parameters for a doublet tube ear

7!

Tympanum area 7% 10-8 m?

=
Tympanum thickness d = 20 um
Tympanum resonance w¥/2m = 4000 Hz
Tympanum Q value Q=5

Tube radius a = 150 pm
Tube length ! = 20mm
Tube damping coefficient a = 28m™?
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Fig. 20. (@) Physical arrangement and () analog network for a simple horn-
coupled non-directional ear. Zp is the tympanum impedance, Zy the cavity
impedance and Z; the 4-pole representing the horn.

the resistive losses of the tympana. Such a system is therefore not
necessarily confined to the narrow tracheae of insects but could also be
used with wider tubes in larger anaimls,

(b) Stmple horn-coupled ears

Fig. 20(a) shows a prototype horn-coupled ear of the simplest possible
kind. A horn of length / and open area S tapers to meet a tympanum of
area Sy which is backed by an enclosure of volume V. The electrical
analog network is shown in Fig 20(b).

If the horn is operating well below its cut-off frequency (i.e. if its
flare rate is very rapid) then it has essentially no effect on the behaviour
of the system, which then reduces to the simple pressure-response ear
of section 5. More usefully, suppose that the horn is chosen so that it is
well above its flare cut-off frequency at the resonant frequency of the
diaphragm-—cavity combination. Two distinct cases then arise: either
the horn resonance is close to that of the tympanum, in which case the
two resonances reinforce one another, or else these two resonance
frequencies are well separated, in which case the horn acts simply as
a non-resonant impedance transformer at the diaphragm resonance
frequency and contributes a small peak of its own at its quarter-wave-
length resonance.

Calculations for typical examples of these two cases are given in
Fig. 21, using the physical parameters listed in Table 5. The gain in
performance when the horn resonance coincides with the resonance of
the tympanum is clearly apparent. It is incidentally worthy of note,
however, that this performance depends to some extent on the im-
pedance of the tympanum at resonance. If this is too low, either because
the tympanum is too thin or because its Q value is too high, itisunable to
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Fig. 21. Frequency response for a horn-coupled ear of the form shown in
Fig. 20 for the cases where (a) the quarter-wave horn resonance coincides

with the tympanum resonance, and () the horn is half this length but still
above its flare cut-off frequency. Other parameters are given in Table 5.

"TABLE §. Assumed parameters for a horn-coupled ear

Tympanum area Sp = 107"%m?
Tympanum thickness d = 100 pm
Tympanum resonance wh/am = 8ooo Hz

Horn opening area e
Tympanum Q value 0]
Cavity volume 14
l mm
l omm

Horn length (non resonant)

Sg = 2-3x107° m?
Horn length (resonant) =

3
8 x 1078 m?
5
I

act as an adequate termination for the horn and the combined resonance
peak has a dip in its centre.
Provided the horn diameter is less than about one fifth of 2 wavelength,

" this auditory system will be essentially non-directional. For higher

frequencies, as discussed before, sound from the direction of the horn
mouth will predominante. '

(c) Complex auditory systems

The auditory systems of many animals, and particularly of insects, have
developed as specializations of their respiratory systems and therefore

‘sometimes consist of a labyrinth of tubes and cavities with no obvious

acoustical function. Evolution has permitted the development of these
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structures, however, in such a way that they do not interfere with the
auditory function and may indeed enhance it by providing extra reson-
ances or phase shifts within the primary system.

It is not appropriate here to calculate in detail an example of such
a complex auditory system, since this can only be done with the anatomy
of a particular animal in mind. One case that has been so studied is that
of the cricket Teleogryllus commodus (Walker) where the acoustical
analysis seems to explain very satisfactorily the observed auditory
response (Fletcher & Thwaites, 1979).

In addition to the anatomical complexities involved in real animals it
is also appropriate to recognize that the external form of the animal in
which the auditory system is embedded may also have an influence on
system behaviour. Thus diffraction effects around the animal’s body may
influence not only the path lengths to the various ports of the auditory
system (these lengths then becoming weak functions of the incidence
angle ) but also the magnitude of the pressure at each port (which may
again be a weak function of #). While these effects are unlikely to be
important, they may well be appreciable in determining total system
performance.

8. SOUND-GENERATING SYSTEMS

As we remarked in the introduction, sound-generating systems are in
many ways similar in structure to auditory systems except that the
auditory capsule is replaced by a mechanical vibration generator. There
is, however, a considerable difference in detail between the two systems,
if only because of the vast difference in power levels involved. Thus the
mechanical generator in most systems is a robust, high-impedance
structure driven either by heavy muscles or by a relatively high-pressure
air flow. The generator is also generally highly non-linear, in the sense
that, though its oscillations are driven by linear feedback from some of
its vibrating parts, cubic terms in the oscillation behaviour act decisively
to determine the amplitude of vibration and hence the maximum
possible sound output. v
Sound generators may have in-built periodicity, like the saw-teeth
on one part of the body which are drawn at constant velocity across
another structure, or may have an oscillation frequency that is deter-
mined by resonance, either within the mechanical structure or in other
associated pipes and cavities. In many cases both these effects co-
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operate to create 2 steady vibration with good frequency stability and
large amplitude. An example of such a cooperative system is the cicada
i which the primary sound producers, the tymbals, buckle progressively
under the influence of muscular action to provide a train of pulses which
are in resonance with a large acoustic bladder (Fletcher & Hill, 1978).
In the analysis of these systems it is important to remember that
the primary sound generator is often a high-impedance source whose
own resonances may completely dominate those of associated acoustic
structures which serve then simply to couple the sound efficiently to the
air. The analogy with musical instruments (Fletcher, 1979) is therefore
fruitful only if impedances are taken quite explicitly into account in
order to determine which part of the system is really responsible for its
dominant behaviour. With this caveat we can apply much of the formal
apparatus of analysis discussed above to this rather different class of
problems. Two additional specific things must, however, be taken
explicitly into account.
The first of these is sound radiation, for this generally represents only
a small fraction of the total dissipation in the system. From a systems
analysis point of view, which is what we are attempting here, the radiation
resistance appears as a dissipative element in series with one of the
components of the acoustical system. In the case of a horn-coupled
vocal system as in most of the larger animals, this radiation resistance
(along with an inertance load representing the ‘end correction’).appears
across the output port of the horn network. Explicit expressions for this
radiation impedance are given, for example, by Morse (1948, pp. 326—
338) and by Olson (1957, Pp- 97-99). If the radius of the open end of
the horn is less than about one-fifth of a wavelength, which is usually
the case at least for the lower-frequency components of the sound, then
the acoustical resistance loading the horn is independent of its mouth
size but increases proportionally to frequency, so that high-frequency
sounds are more efficiently radiated than are low-frequency sounds. If
the horn radius is larger than about a fifth of a wavelength then, as we
have already noted, there is no reflexion from the open end and all’
sounds are radiated equally, though with increasing directionality at
. high frequencies. In this case the acoustic resistance loading the mouth
of the horn is simply pc/.S, where S is the mouth area.
In the case where the sound radiator is not one-sided like a horn but
two-sided like a vibrating wing membrane, the radiation process is much
less efficient unless the loading on the two sides of the vibrator is made
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asymmetrical or unless the size of the vibrator is at least comparable
with the wavelength involved (Olson, 1957, PP- g). Insect wings in
flying therefore radiate relatively little sound for the muscular effort
involved, and sound generators of this type generally rely on the prox-
imity of the body to one side of the membrane or the presence of some
resonating device to couple the vibration efficiently to the air (Fletcher
& Hill, 1978).

Finally we note that, since the primary sound generator is non-linear,
we may expect an acoustical spectrum consisting either of a series of
harmonics based on a fundamental, or sometimes of a series of sum and
difference frequencies based on two or more fundamentals (Fletcher,
1978). The extent of overtone generation depends very much, however,
upon details of the basic generator involved and on the presence or
absence of any closely coupled resonant cavities. The human larynx, for
example, is extremely non-linear and produces a train of flow pulses
with very high harmonic content, while the songs of many birds and
insects are very nearly sinusoidal, the generator presumably having
just sufficient non-linearity at its working level to limit the amplitude
of its vibrations.

9. EXPERIMENTAL ANALYSIS OF SYSTEMS

The behaviour of an auditory or sound-producing system can be said to
be properly understood only if we can account quantitatively for all
features of its behaviour. Leaving aside the complex non-linearities
involved in muscular sound generators, this means that we must know
the numerical values of all the acoustic impedance elements involved in
the equivalent network at all frequencies of interest. As we have seen,
once these impedances are known, we can easily deduce the system
behaviour.

Part of the value of our method of analysis is that it tells us what
measurements must be made to determine uniquely the impedance
elements of the system. Let us see how we should proceed.

The basic measurements that can be made on the acoustical system
all involve exciting the system at one or more of its ports with an |
acoustical pressure signal and then measuring either acoustic pressure
(by means of a probe microphone) or acoustic flow (by observing the
motion of a membrane) in some other part of the system. The measure-
ment in each case involves determining both a magnitude and a phase.
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Since the elements of the system are linear, we should first remark
 that application of two exciting signals simultaneously to different ports
of the system gives no information in addition to that obtained from
measurements with the two signals applied separately. It also follows
that, since only the ratio of the magnitude of the observed quantity to
the applied quantity and the difference in phase between them are
significant, each such measurement yields exactly two pieces of infor-
mation. We assume that each measurement is extended over the whole
frequency range of interest. ‘

“Preliminary analysis of the acoustical system based on anatomical
information now allows us to construct an electrical analog circuit and
we can simplify this as much as possible by combining series elements
to form lumped impedances Z. Each such impedance consists of a resis-
tive part R and a reactive part X so that

Z = R+jX (61)

both R and X depending, in general, upon frequency. Each symmetrical
tube requires two impedances, Z3; and Zy,, for its specification and each
horn three impedances Zyy, Zgy and Z;,. If the total number of impedance
elements is N, then, since each involves two quantities R and X, we
require 2N measurements for their determination. If amplitude ratio
and phase difference are found for each physical measurement, we
therefore require N independent physical measurements.

Measurements are in general independent if the excitation and
observation points differ from one measurement to the other and are not
related by symmetry. Another possible way of achiéving an independent
measurement is to replace one of the unknown impedances in the
circuit by a different and known impedance, generally an effectively
infinite impedance obtained by- blocking an opening with wax or by
immobilizing a tympanuni by flooding it with liquid.,

The exact procedure for finding all the impedance values from the
experiments consists essentially of substituting the measured values
into equations like (20) for the particular system configuration concerned
and then solving these N equations for the unknown impedances.
Provided the system is not too complex, this procedure is quite feasible
on a desk-top computer, and the resulting Z(w) values at all frequencies
effectively define the system completely.
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10. CONCLUSION

The analysis of auditory and sound-producing systems, even at the
mechanical and acoustic level, is by no means 2 simple task but, as we
have tried to show, formal analytical methods are available to perform
this task. We would-emphasize once again that this is only the begin-
ning — acoustical considerations serve merely to define the first stage of
auditory behaviour and it is to higher levels of neural sophistication that
we must look to find the sharp frequency and orientation discriminations
which are so vital in auditory neurophysiology.

We are grateful to colleagues in the Department of Neurobiology at
the Australian National University for most helpful discussion of their
anatomical and neurophysiological studies, and in particular to Ken Hill
who commented in detail on a draft of the manuscript.

This work is part of a programme in biological acoustics supported by
the Australian Research Grants Committee.

APPENDIX

The hyperbolic functions cosh ¥, sinh 7, tanh ¥ and their reciprocals
sech 7, cosech ¥ and coth y for a complex argument ¥ = o +jp are
defined by analogy with the corresponding trigonometric functions
through the relations

cosh y = (e +e7), (A1)
sinh y = He?—e™). (A2)
We then immediately find the relations

cosh jB = cos B, (A3)

sinh jf = j sin f, (A 4)
for a real variable f, and the further results :
cosh (x+jB) = cosha cos f+jsinha sin B, (As) |

sinh (¢ +jB) = sinha cos f+jcosha sin f, | (A 6)

which are used in manipulating the formulae in the text.
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ERRATUM
Physical Models for the Analysis of Acoustical Systems in Biology

By N. H. FLETCHER axp SUSZANNE THWAITES

Department of Physics, Untversity of New England
Armidale, N.S.W. 2351, Australia

Figure 15 of the paper titled above (Quart. Rev. Biophys. 12, 1,
February 1979, page 51) contained several drafting errors. It should
be replaced by the corrected version below.
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