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Western music is based upon the sounds of instru-
ments with repeating waveforms and harmonic fre-
quency spectra. While strings and pipes come close
to this ideal, they achieve it only because of the
influence of great levels of nonlinearity in the sound
generating mechanism. Bells and gongs, on the
other hand, generally have very inharmonic spectra,
and when significant nonlinearity is present it leads
to phenomena such as pitch glide, frequency-multi-
plication cascades, and transition to chaos.

The music with which we are all familiar is based upon simple
prm01ples Musical instruments produce sounds in which the
overtones are exact integer multiples (harmonics) of the funda-
mental, and two notes sound pleasantly together if their funda-
mental frequencies are in the ratio of two small integers — 2:1

for an octave, 3:2 for a perfect fifth, and so on. And the reason
why this works, we have all been told, is that the vibrational
modes of taut strings, and of the air in cylindrical or conical
tubes, have frequencies that form a simple integer progression,
albeit a progression of odd integers in the case of a cylindrical
tube stopped at one end.

If you have examined the subject a little further, you will know
that even this simple prescription has its difficulties, for it is
not possible to step out a sequence of fifths and get back to an
octave of the note you started from, simply from the prime
number theorem, which says there are no integers » and m such
that 2" = 3. We return to discuss scales, harmony and music
in the final section of this piece, but for the moment we con-
centrate upon physical phenomena.

Let us return to strings and tubes for a moment. Are the over-
tones of a real string really exact harmonics of the fundamen-
tal? The answer is “no”, and the reason is that a real string is
not infinitely flexible. For an ideal string, indeed, the frequen-
¢y f, of the nth mode is nf;, while for a simple stiff rod fi=(n
+ &)’ f, where € depends upon the way in which the ends of the
rod are fixed and has a value in the range —0.5 to +0.5. Putting
these effects together in a fourth-order differential equation, we
find that the modes of a rsal string have frequencies like

Jo=nfy(1+ Bn?)» M

where.B depends on the elastic modulus, radius and tension of
the string. A skilled piano tuner adjusts the string tensions so
that there is no beat between the string being tuned and the

second mode of the string an octave below it, with the result
that all the octaves are slightly stretched above a 2:1 ratio, the
total stretch being nearly half a semitone over the compass of
the piano.

Much the same thing occurs in the resonance of air columns in
tubes, though for a different reason. The acoustic length of a
tube, as is well known, is greater than the geometric length by
a small additive quantity called the end-correction. For an
open end, this correction is about 0.6_times the tube radius.
The complication is that the end-correction depends on fre-
quency and decreases towards zero as the frequency is raised,
effectively vanishing when the sound wavelength is equal to
half the circumference of the tube. The upper modes of an
open pipe are therefore higher in frequency than true harmon-
ics of the fundamental, the behaviour being very like that given
by equation (1) above. This effect is even more exaggerated for
a partly-open pipe termination such as the mouth of an organ
pipe or the blowing end of a flute.

AH thls Would cause us no concern except for the experimen-
tal fact that the sounds made by sustained-tone instruments
such as violins, flutes and clarinets have exactly repeating
waveforms. This can be demonstrated only over half a minute
of so by an actual player, but for an indefinitely long penod
using a belt-bowing machine or a compressed air source and,
as we all know, a repetitive waveform consists of prec1se har-

monics of the fundamental. How can these be oenerated from
modes that are quite significantly mharmom 9 'The surpn mg
answer is “by nonlinearity!” :

Flgure 1 shows a system dlagram for

actually generated by the mstrument is typlcally less than 1
percent of the input power, most of which is wasted in viscous
and thermal losses along the way.
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Figure 1. A musical instrument as a system. A4 feedback loop between
the passive resonator and the negative-resistance generator provides
the sounding mechanism, and all is under the control of the player.
Physically, the sound is a minor by-product!

With one exception that we come to later, the resonator is
driven at a level sufficiently low that its response is linear, but
this is not true of the sound-generating mechanism. Indeed it
is the nonlinear behaviour of the sound generator that makes
the whole instrument function properly - we might term it
“essentially nonlinear.”
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Figure 2. Quasi-static flow characteristic of a reed generator such as
that of the clarinet, shown in inset. The difference between the blowing
pressure p, and the pressure p in the instrument mouthpiece drives the
Sflow, but also tends to close the reed opening. Between the points A
and B the acoustic conductance of the reed generator is negative.

Consider first the reed generator in a clarinet, as shown in
Figure 2. The air pressure in the player’s mouth causes a flow
of air through the reed opening that is proportional to the
square root of the pressure drop and directly proportional to the
area of the opening between the reed and the mouthpiece. At
the same time, this applied pressure tends to close the reed -
opening, so that the actual volume flow U has the form

U= 4Ap"(1 ~ BAp) )

where 4 and B are constants and Ap is the difference between
the blowing pressure and the pressure in the instrument mouth-
piece. The form of this curve is shown in the figure. In acoustic
terms, the pressure can be considered the analog of electric

potential and the volume flow the analog of current, so the
slope of the curve gives the acoustic conductance of the reed
valve. The first important thing is that this conductance is neg-
ative when the blowing pressure exceeds one-third of the pres-
sure required to completely close the reed, so that for pressures
above this threshold and below the closing value the reed valve
can act as an acoustic sound generator. The second thing of
note is that the slope of the curve varies with pressure, so that
this negative driving resistance has a nonlinear behaviour.

Much the same thing happens for the lip-valve of a trumpet
player, except that here the mouth pressure tends to force the
lips apart instead of closed. It turns out that what is required
to make the lips act as a generator is a change in the phase of
their motion relative to the acoustic pressure, and this is
brought about by having them driven a little above their reso-
nance frequency, while thé reed of a clarinet is driven well
below its resonance. The details need not concern us here;
except to note that, once again, the flow is a nonlinear function
of pressure.

Flute-like instruments are rather different and more complex in
behaviour, and depend upon wave propagation on an air jet.
The important thing from our present viewpoint is that, when
this air jet reaches the sharp edge of the mouth-hole in the
instrument, it can do not more than blow completely into or
completely outside of the lip. Thus, while flow into thé instru-
ment is a linear function of acoustic disturbance at small
amplitudes, it saturates for large jet displacements in’either
direction.

Let us briefly examine the behaviour of a linear resonator dri-
ven by a nonlinear negative-resistance generator. Sﬁppose the
angular frequencies of the resonator modes are w, and that they
are not in harmonic relationship. Then the behaviour of the nth
mode is governed by an equation of the form

xn” + kx‘-n, + (DHan = g(xrm xm’) (3)

where & is a damping coefficient, a prime implies differentia-
tion with respect to time, and g is a nonlinear function of all the
mode amplitudes and velocities. There are potentially contri-
butions to g from all modes m, and there is an equation of this
form for each of the modes. Notice that the right-hand side of
(3) depends solely upon the values of the mode amplitudes x,,
and their time derivatives, and that if g is positive it contributes
a negative damping that can balance out the term kx,” on the
left-hand side. If this happens, the system breaks into self-
excited oscillation.

While this looks complicated, it turns out that it is quite easy to
find a solution by writing x, = a, sin(®,¢ + ¢,) and assuming
that both q, and ¢, are slowly varying functions of time. We
can then find explicit expressions for both da,/dt.and d¢,/dt as
time-integrals of g multiplied by cos(®,f + ¢,) or sin(w,z + ¢,)
respectively, and from these we deduce a shift in the actual fre-
quency of mode n to a new value w, + d¢,/dt. The extent of
this frequency shift is proportional to the magnitude of the
terms in g that are in-phase with x, and that have frequency
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close to @,. Similarly, the rate of change of amplitude is pro-
portional to the terms in g that are in-phase with x,’. In sys-
tems with nearly harmonic modes, the simplest and -most
important of these terms arise from quadratic combinations of
the form xx; with ®; + ©,= ®,. It turns out that, provided the
nonlinearity is large enough, the system will settle down after
an initial transient to a state in which the modified frequencies
are in simple integral relationship, giving a repetitive wave-
form and a harmonic frequency spectrum.

Since the pipes of an organ are included among the instruments
just discussed, we conclude that their sound spectrum is precise-
Iy harmonic and that the octaves on an organ should be in exact-
Iy 2:1 ratio. This is confirmed by examination of the tuning of
these instruments. An organ does not go well with a piano!

All this may not sound like a big deal for a simple pipe with
nearly harmonic mgdes, but for most notes on a woodwind
instrument there are several finger holes open along the length
of the pipe, and measurements show that there are then sever-
al modes that are in nothing like harmonic frequency relation-
ship. If the nonlinearity is not large enough, then two or more
of these modes may be excited independently, and the nonlin-
earity will then produce multiple sum and difference frequen-
cies. The result is a non-harmonic chord-like sound termed a
multiphonic. These sounds are much loved by those modern
composers who are unable to write melody or harmony, but
otherwise have only a very limited place in music.

Brief mention should also be made of a completely different
nonlinear effect that occurs in instruments such as trumpets
and trombones when played very loudly. Measurements and
calculations show that in this case the internal sound pressure
level can be as high as 175dB, which is equivalent to about
10kPa or one-tenth of normal atmospheric pressure! Under
these conditions, sound waves propagating along the narrow
cylindrical bore of the instrument develop into shock waves
with steepened wavefronts. This effect transfers energy from
low to high frequencies and gives the incisive tone quality that
we associate with these instruments.

Consider now the bowed string of a violin. The frictional force
between the bow and the string is a function of relative veloci-
ty, as well as of the normal force which we take to be constant.
Static friction is higher than dynamic friction, and there is a
smooth decrease in the coefficient of friction with increasing
relative velocity. This situation is illustrated-in Figure 3. Since
the slope of the friction vs velocity curve is uniformly positive,
more energy is supplied to the string when moving in the same
direction as the bow than is lost when its motion is»revefsed, S0
that the frictional contact acts as a negative mechanical resis-
tance. The slope of the curve is, however, not constant, and
indeed the force has a catastrophic reversal of sign when the
string velocity equals the bow velocity. Mild nonlinearity on
the gently sloping part of the curve becomes pathological when
the string catches up with the bow!

While we can employ the same mathematical analysis set out
above to this case, it is actually easy to see how the extreme
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Figure 3. Behaviour of the frictional force between a moving bow and

a string as a function of string velocity. When the string velocity
equals the bow velocity, the frictional force is undetermined. When
the string is moving more slowly than the bow, the mechanical resis-
tance of the contact is negative and promotes string oscillation. The
normal motion is of “stick-slip” type.

nonlinearity leads to mode-locking and a repetitive waveform.
The string simply sticks to the bow for a large part of each
oscillation cycle and then slips rapidly to the further extfeme of
its motion, giving a repetitive waveform.

Both Helmholtz and Raman are among those who investigated
bowed strings in detail, and there has been much recent
progress using computer analysis of the motion. There is a
well-defined range of possible bowing speeds, for a given bow-
ing position along the string and a given normal force, within
which the stick-slip mechanism works well. Outside this
range, despite the extreme nonlinearity, mode-locking fails to
occur, and we experience the excruciating sounds made by
some beginning violinists!

From this discussion and that in the previous section, we con-
clude that the sustained-tone instruments upon which Western
music is based have repetitive waveforms and harmonic fre-
quency spectra. In a later section we return to consider the
influence that this has had upon the development of music.

connected from the string after the
only nonlmeanty that remains is tha
string itself. If the string tensm i
hlgh then the tens1on can be

extra tensmn rals/ ]
causes the Stﬂng to “twang” unpleasantly as its frequency
drops durmg the decay of the oscﬂlatlon For th.lS reason,
among others, guitars usually use nylon stnngs with rather low
Young’s modulus, while the steel strings of pianos are ten-
sioned to almost their breaking point.

Apart from this minor nonlinear effect, impulsively excited
strings oscillate with a combination of modes that have fre-
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quencies given by equation (2) above and amplitudes that are
determined by details of the pluck or hammer impact. The
nylon strings of a guitar are not appreciably inharmonic, but
the steel strings of a piano have stretched octave modes so that
the scale of the whole instrument must be slightly stretched, as
discussed above. The scale of a harpsichord is very little
stretched because the strings have very small diameter.

Percussion instruments of the drum family need not concern us
here, interesting though they are, but we concentrate on those

instruments made from metal. Bells are perhaps the most
familiar, and produce a more-or-less harmonious sound,
depending upon their design. Tradition plays a large part here,
and the shapes of Western bells have evolved over many cen-
turies. The vibration amplitude of the bell is so small, and the
stiffness of its thick cast metal so great, that nonlinearity is
insignificant and the bell sounds its characteristic mode fre-
quencies. As many as six modes frequencies are adjusted dur-
ing manufacture by turning metal off the inside of the bell on
a vertical lathe, and the result is a sequence like 1/2, 1, 6/5, 3/2,
2,..., the nominal pitch being 1 and the octave below that being
the “hum” note. The presence of a minor third interval, 6/5, is
what gives to a bell its characteristic sound.

The thick-walled metal gongs of the Indonesian gamelan are
similarly uninfluenced by nonlinearity, but their mode fre-
quencies are very far from being in harmonic ratio. As we dis-
cuss later, this leads to a characteristic gamelan scale that is
different from the familiar Western scale but, since the decay
time of these gongs is quite short, harmonies are not very much
in evidence in their music.

The two small gongs of the Chinese Opera have quite a differ-
ent sound. They consist of a nearly flat central portion, sur-
rounded by a shallow conical section and terminated by a
turned-down rim. They are struck centrally with a padded stick
to excite just the fundamental mode. The larger of the pair has
an exactly flat vibrating section,.and large oscillation causes
appreciable radial tension which raises the vibration frequency
just as in a string. When the gong is struck vigorously, the fre-
quency therefore starts high and falls back towards its small-
amplitude value as the sound decays, the pitch glide being as
much as a major third (5/4). The smaller gong, on the other
hand, has a ceritral portion that is very slightly domed - only

about 1mm over its 100mm diameter - and this is just enough

to reverse the behaviour, so that the pitch glides up instead of
down. Analysis of the radial stress shows why this occurs.

More interesting from our present perspective is the large
Chinese gong or tam-tam, which makes occasional appearance
in Western symphony orchestras. It is typically about a metre

in diameter and nearly flat, though closer examination shows a -

raised central hump, a turned-down edge, and several circles of
hammered bumps. When struck in the centre with a large
padded stick, it gives out an impressive sound that starts as a
low-pitched simple tone and develops over several seconds into
a high-pitched shimmering gloss. Examination of the devel-
opment of the spectrum over time, as shown in Figure 4, shows
- that energy is indeed transferred from a low-pitched centro-

Relative level (dB)

Frequency (kHz)

Figure 4. Sound spectrum of a Chinese tam-tam immediately after
being struck, and after the lapse of 3 seconds. Note that the initial
low-frequency peak has disappeared, and energy has been transferred
from it to high-frequency modes.

symmetric fundamental mode into a multitude of high-fre-
quency modes distributed towards the edge of the gong.

Again we see nonlinearity at work. Excitation begins with a
simple central mode at frequency f. Because the gong is made
from thin metal and vigorously excited, it develops significant
radial tension forces that oscillate at twice the frequency of the
mode concerned, and thus at 2f. When this tension stress
encounters a sharp change in slope, as at the rings of ham-
mered bumps, some of its energy is transferred to the next part
of the surface as a transverse vibration at this doubled fre-
quency. In addition, it can interact in the same place with the
original ‘mode, giving an excitation at 3f, and can similarly
interact with all other modes present. The result is a cascade
of energy to progressively higher frequencies, just as our ears
inform us.

The bebaviour of cymbals is rather similar, except that they are
normally supported. in the centre and struck near the edge with
a hard stick, thus exciting the higher modes immediately.
Perhaps surprisingly, both the tam-tam and the cymbal appear
to exhibit chaotic behaviour in their final vibration. Interesting
examination of this can be made by exciting the gong in its
centre using a sinusoidal shaker with variable amplitude and
frequency. Experiments of this kind show regions of period-
doubling, behaviour, period multiplication by other factors
such as 3 or 5, and ultimately a transition to chaos.

Since this is a discussion of physics rather than of music, there
is space for only a brief note on the implications of what we
have seen. The aim of music is to produce pleasant sounds,
and what is pleasant depends on human auditory perception.
For two simple sinusoidal sounds played together, frequency
differences of a few hertz are not unpleasant, but simply pro-
duce a thythmic fluctuation in loudness. When the frequency
difference approaches 20Hz, however, our ears cannot follow
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the time variation and we hear an unpleasant rough sound. For ments sound pleasant. Musicians in the societies concerned

still greater frequency differences, we hear the two tones indi- have evolved these scales over the centuries, but it is now pos-
vidually, and it makes little difference what their relative pitch- sible to construct them as a scientific exercise for any arbitrary
es are. Perhaps surprisingly, musical intervals such as octaves sound spectrum, simply by minimising the dissonances
of fifths do not show any greater degree of concord. between upper partials..

When we come to complex sounds, the degree of concordance
can be evaluated by summing the effects of all pairs of partial
tones interacting with each other. If the initial sounds are har-

monic, as for sustained-tone instruments, then the pair will . There are many places where more information about the mat-
sound well together when their fundamental frequencies are in ters discussed here can be found. In particular, a recent survey
the ratio of two small number, like 2:1 (octave), 3:2 (fifth), 5:4 by the present author [1] covers the whole subject in some
(major third), and so on, for then there are no beats between detail, and a book [2] gives extensive information about the

their harmonics and so no roughnesses. Very slightly out-of- physics of musical msments. Both‘these sources give exten-
tune intervals are tolerated because slow beats do not worry us sive references to the literature. Finally, a recent book by
too much, but differences of only a few hertz in the fundamen- Sethe,res [31 gives an excellent account of harmonic and inhar-
tal frequency translate to differences of 15-30Hz in some of the monic musical scales, an‘? even goes so far as t(.) construct a
higher partials and give unpleasant discords. For this reason, scale based on the diffraction spectrum of morphine!

the Western musical scale is based on small-integer frequency
ratios, and “playing in tune” is critical. As mentioned at the
beginning, we run into trouble when we try to devise a fixed
scale that will work in more than a single musical key - but that

- is another story. :
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regular structure, like the sounds of bells or of gamelan gongs, [756 pp.]
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The International Association of Geodesy (IAG) which governs large—scale geographlcal measurement, has adopted a s1gmflcant adva;nce in the
accuracy of surveying which was made by an Australian scientist. ‘

Philip Ciddor, an honorary fellow at CSIRO’s National Measurement Laboratory, developed new equations while on the Association’s working
party. His research was carried out in consultation with colleagues from several countries, including Dr RJ Hill of the National Oceanic and
Atmospheric Administration in the United States and Professor JM Rueger, Associate Professor of Surveying at the University of NSW. _
Modern surveying is carried out by measuring the time taken by light to travel over the distance being measured, a kind of ‘optical radar’. While
the speed of light is constant in a vacuum, it varies with the composition and conditions of the atmosphere.

The equations commonly used to correct for this variation were based on outmoded data. Errors of one part in ten million were occurring which
caused problems in measurement of large distances, for example from the earth to man-made satellites. .
The new equations are being applied to geodesy where distances are measured through the atmosphere between terrestrial stations or to satelhtes
Last year the International Association of Geodesy (JAG) adopted the new equations by recommending them to the surveying commumty for use
in the most accurate measurements, such as measuring distances to the moon and artificial satellites and in synchromsmg atomic clocks around
the world ‘

Luck says Ciddor’s work is of fundamental importance in all aspects of distance measurement using electro—magl:\etlc rad1
laser wavelengths

to the measurement of the diameter of silicon spheres used at CSIRO’ National Measurement Laboratory in developmg an ‘atomic. lglogrm
This resulted in the apparatus used to measure the spheres being set to operate at a pressure of a few percent of normal conditions, scaling the
underlying uncertainty to an acceptable level.

Most recently Ciddor’s research has involved a consideration of the validity of some of the basic equations that describe the optical properties of
gases, including a classical experiment performed in the National Physical Laboratory in Britain in the 1930s.

Philip.Ciddor@tip.csiro.au.
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