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AIR FLOW AND SOUND
GENERATION IN MUSICAL
WIND INSTRUMENTS
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N. H. Fletcher
Department of Physics, University of New England, Armidale, N.S.W. 2351,
Australia

INTRODUCTION

Over the past two decades or so, interest in musical acoustics appears to
have been increasing rapidly. We now have available several collections
of reprinted technical articles (Hutchins 1975, 1976, Kent 1977), together
with a large number of textbooks, of which those most suitable for cita-
tion in this review are by Olson (1967), Backus (1969), Nederveen (1969),
and Benade (1976). The mathematical foundations of the subject were
laid primarily by Lord Rayleigh (1896) and are well treated in such
standard texts as Morse (1948) and Morse & Ingard (1968).

This review covers a much more restricted field than this preliminary
bibliography might suggest. Among all the varieties of musical instru-
ments I concentrate on those capable of producing a steady sound that
is maintained by a flow of air, and even within this family I am interested
not so much in the design and behavior of the instrument as a whole
but rather in the details of the air flow that are responsible for the actual
tone production.

Although musical instruments function as closely integrated systems,
it is convenient and indeed almost essential for their analysis to consider
them in terms of at least two interacting subsystems, as shown in Figure
1. The first of these is the primary resonant system, which consists of a
column of air, confined by rigid walls of more or less complex shape
and having one or more openings. Such a system is generally not far from
linear in its behavior and it can be treated, at least in principle, by the
classical methods of acoustics. The second subsystem is the airdriven
generator that excites the primary resonator. This subsystem is generally
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124 FLETCHER

air
pressure

Fi#ure 1

Drive
Generator tout’ling Resonator

Feedback
coupling

Acoustic
output

System diagram for a musical wind instrument.

highly nonlinear, either intrinsically or through its couplings with the
resonator system, and it is this nonlinearity, as we shall see below, that
is responsible for the stability of the whole system as well as for much of
its acoustic character.

AIR COLUMNS

The acoustical behavior of an air column of arbitrary cross section is
well understood provided the cross section is a slowly varying function
of position (Eisner 1967, Benade & Jansson 1974, Jansson & Benade
1974). Columns enclosed in tubes of exactly cylindrical or exactly conical
Shape are particularly simple to analyze, as are a few other special shapes
(Morse 1948, pp. 233-88, Benade 1959, Nederveen 1969, pp. 15-24), but
the detailed shapes of the bores of real wind instruments usually differ
significantly from these idealized models.

The quantity of major importance for our discussion is the acoustical
impedance Zp (defined as the ratio of acoustic pressure to acoustic
volume flow) at the input to the resonator where the driving force from
the generator may be supposed to act. Various instruments have been
developed to measure this impedance (Benade 1973, Backus 1974, Pratt
et al 1977) following early work by Kent and his collaborators. Because
of the phase shifts involved, Zp is usually written as a complex quantity,
and the measuring system can be arranged to yield either the real part,
the imaginary part, or simply the magnitude of either the impedance or
its inverse, the admittance.

For a narrow cylindrical pipe of cross-sectional area A the acoustic-
wave propagation velocity has very nearly its free air value c, and the
major losses are caused by viscous and thermal effects at the walls, com-
paratively little energy being lost from the end (ifopen) provided its cir-
cumference is much smaller than the acoustic wavelength involved. If we
denote angular frequency by o~ then the propagation number is k = ~o/c,
and we can generalize this to allow for wall losses by replacing k by
k-jk’, where j = x/- 1 and k’ ~ k. The loss parameter k’ increases with
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MUSICAL WIND INSTRUMENTS 125
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Figure 2 Acoustic input impedance Zp, in units of pc/A, for a typical cylindrical pipe
open at the far end. Zp is plotted on a logarithmic scale so that the acoustic admittance
Yp = Zp 1 is obtained simply by inverting the diagram. Typically pc/A ~ 10e Pa m- 3 s ~ 1
SI acoustic megohm.

frequency like (01/2¯ If the pipe is open at the far end then the input
impedance is very nearly

Zp ~ j(pc/A) tan [(k-jk’)l], (1)

where p is the density of air and the effective pipe length l exceeds the
geometrical length by an end correction equal to 0.6 times the radius.
The form of this expression is shown in Figure 2, which is plotted on a
logarithmic scale so that the magnitude of the input admittance Y~ = Z; 1
Can be seen by simply imagining the picture to be inverted.

The impedance Zp shows peaks of magnitude (pc/A) coth k’l at fre-
quencies O9o, 3o90, 5(00 ..... and the admittance Y~ shows peaks of magni-
tude (A/pc) coth k’l at frequencies 2e)o, 4090, ..., where (0o is given 
kl = re/2 or c00 = nc/21. For a pipe of finite radius these resonances are
slightly stretched in frequency, but this need not concern us here.

For our present purposes we need consider only two types of excitation
mechanism: the air jet of flute-type instruments, whose deflection is
controlled by the velocity of the acoustic flow out of the pipe mouth as ̄
shown in Figure 3, and the reed or lip-reed generator, whose opening is

flue upper lip
lower lip / 7outy

foot languid bod/ tuning slide

Figure 3 Section through a typical organ flue pipe showing its main constructional
features.
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126 FLETCHER

controlled by the acoustic pressure inside the pipe at the mouthpiece as
shown in Figure 4. We can call these respectively velocity-controlled
and pressure-controlled generators. A velocity-controlled generator clearly
transfers maximum power to the pipe resonator when the acoustic flow
at the mouth is maximal and thus at the frequency of an admittance
maximum.. A pressure-controlled generator transfers maximum power
when the acoustic pressure is maximal and thus at the frequency of an
impedance maximum. I examine these statements in greater detail below
and also note small modifications to allow for finite generator impedance.

The consequences of this behavior are easily seen. Flutes and open-
ended organ pipes overblow to produce the notes of a complete harmonic
series 2090, 4090, 6090 .... based on the fundamental 2090, while clarinets,
which also have nearly cylindrical pipes, produce the odd harmonics
COo, 309o, 509o, ... only (to a first approximation at any rate). We can
also have flutelike systems in which the far end of the pipe is stopped

rather than open, giving an input impedance like (1) with tan replaced
by cot and a characteristic curve effectively inverted relative to Figure 2.
A velocity-controlled air-jet generator leads to possible sounding fre-
quencies Oo, 3o0, 5090, ... for such a system, while a reed generator
fails to operate because of back pressure.

In the case of instruments like the oboe, bassoon, or saxophone,
which are based upon an approximately conical pipe, the impedance
maxima for the pipe lie at frequencies 2090, 4090, 6090 .... with I equal to
the complete length of the cone extended to its apex (Morse 1948, pp.
286-87, Nederveen 1969, p. 2-1). Such instruments produce a complete
harmonic series like the flute rather than an odd-harmonic series like
the clarinet.

Finally, the geometry of the brass instruments, with their mouthpiece
cup, partly cylindrical, partly conical tube, and flaring bell, is adjusted

mouthpiece

reed"--~ (a)

reed blades

(b) ~staple

(c)

Figure 4 Reed configuration in (a) single-reed instruments like the clarinet or saxophone,
(b) double-reed instruments like the oboe or bassoon. Note that in each case the blowing
pressure tends to close the reed aperture (s = -1). For a lip-valve instrument like the
trumpet (e), the blowing pressure tends to open the lip aperture (s = + 
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MUSICAL WIND INSTRUMENTS 127

by the designer so that their impedance maxima follow a progression
like 0.8 ~o0, 2O~o, 3090, 4~Oo .... (Backus 1969, pp. 215-23, Benade 1973).
This progression is musically satisfactory, with the exception of the
lowest mode, and the flared bell of the instrument produces a generally
more brilliant sound than the straight conical horn used in some now-
obsolete instruments such as the cornett, ophicleide, and serpent
(Baines 1966).

I do not pursue here details of the ways in which the fundamental
reference frequency co0 for the air column is varied in different instru-
ments to produce the notes of the modern chromatic scale (Backus 1969,
pp. 223-27, Benade 1960a,b, Nederveen 1969). The important thing for
this analysis is that, ~or every fingering configuration of a musical wind
instrument, there is an impedance curve for the air column that displays
a succession of pronounced maxima and minima. For musically useful
fingerings the successive maxima will often have smoothly graded mag-
nitudes and frequencies that are in nearly integer relationships, but this
is by no means universally true in the case of the woodwinds, particularly
in the upper register.

Because the acoustical behavior of the air column is closely linear, we
can consider each possible normal mode (corresponding to an impedance
maximum or an admittance maximum as the case may be) quite
separately and characterize it by a resonance frequency nl, a resonance
width determined by ~ = k’/k at co = n~, and a displacement amplitude
xi. A complete description then involves superposition of these driven
modes.

SYSTEM ANALYSIS

A formal analysis of the system shown in Figure 1, including the non-
linearities that control its behavior, was first put forward by Benade &
Gans (1968) for the case of musical instruments, though of course much
of the basic work dates back to the early days of electronic circuits
(Van der Pol 1934), and the general theory is of interest to mathematicians
(Bogoliubov & Mitropolsky 1961). Since then the major formal develop-
ments of the nonlinear analysis of musical instruments have been in the
work of Worman (1971) and Fletcher (1974, 1976a,c, 1978a) and 
several unpublished papers by Benade.

Suppose that the pipe resonances are at angular frequencies ni when
the generator is attached but not supplied with air (thus terminating
the pipe with a passive impedance that is generally either much larger or
smaller than pc/A). Let x~ be the acoustic displacement associated with
the ith mode; then, because the resonator is linear, xi satisfies an equation
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128 FLETCHER

of the form

~i "-]- l~i~i -~- n~xi = 0, (2)

where ~i is the width of the resonance.
If we refer to Figure 1, the individual pipe-mode amplitudes xj influence

the air-driven generator with coupling coefficients ~j, which may be
directly related to either acoustic velocity or acoustic pressure, and cause
it to produce a driving force F(~jxj), which depends nonlinearly upon
all the influences ~z~x~. This force F then drives each individual mode i
through a second coupling coefficient fli according to

~i + ~i~i-b n2i Xi = flig(~xjxj). (3)

In general, the ~i and fli will be complex, in the sense of involving a phase
shift. The careful formal development of this approach (Fletcher 1978a)
involves a distinction between air-jet and reed-driven instruments in
interpretation of the xi, but this need not concern us here.

If the instrument is producing sound in a quasi-steady state, then it is
reasonable to assume that x~ has the form

Xi : ai sin (nit + ~)i), (4)

where both the amplitude a~ and the phase ~ are slowly varying func-
tions of time. Clearly a nonzero value of dc~i/dt implies an oscillation
frequency ~oi, given by

~o~ = nl + de~i/dt, (5)

which is close to but not exactly equal to the free-mode frequency ni.
It is now easy to show (Bogoliubov & Mitropolsky 1961, pp. 39-55,

Fletcher 1976a,c) that

dai/dt ~ (fll/nl) (F(~xi) cos (nit + c~i) ) - ½~iai (6)

d~i/dt ~ - (fll/aini) (F(~jx~) sin (nit + ~) (7)

where the brackets ( ) imply that only terms varying slowly compared
with n~ are to be retained.

Several things are immediately clear from these equations. If the blow-
ing pressure is zero, then F = 0, which implies that ~oi = n~ and that the
amplitude a~ decays exponentially to zero. For nonzero blowing pres-
sures, in general ~oi # n~, and because F is a nonlinear function of the x j,
the terms (...) in (6) and (7) will contain slowly varying components
with frequencies ~oi_+~o~_+~o~_+ .... The only situation in which a steady
sound can be obtained occurs when all the blown frequencies ~oi are
integer multiples of some common frequency ~o0. This is the normal
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MUSICAL WIND INSTRUMENTS 129

playing situation for an instrument and is generally achieved after an
initial transient occupying about 40 cycles of the fundamental frequency
involved (Richardson 1954, Strong & Clark 1967, Fletcher 1976a). Once
achieved, and this depends on the amount of nonlinearity present, the
mode-locked .regime is usually stable (Fletcher 1976a, 1978a). Clearly the
nonlinearity of F is also largely responsible for most if not all of the
harmonic structure of the sound spectrum.

Musical instruments can often be played in several different mode-
locked regimes for a given tube configuration and thus for a given set of
pipe resonances--one has only to think of the complex fanfares that
can be played on horns and trumpets without valves. In general terms
we can see that this flexibility can be achieved if the generator F itself
has a resonant or phase-sensitive response that can be adjusted by the
player so as to concentrate F in a narrow frequency range. This is one of
the aspects of generator behavior that I investigate below. The remainder
of this review, in fact, is concerned with the physical nature of different
generator systems and with the air flows responsible for their operation.

Before leaving the general question of system behavior I should point
out that there is a fundamental difference between the structure of the
internal frequency spectrum of the instrument, which is what we calculate
when we find the amplitudes x; of the internal modes, and the structure
of the spectrum radiated by the instrument, which is what our ears
detect. For a simple cylindrical pipe with an open end of radius r,
standard acoustic theory (Olson 1967, p. 85) shows that the radiation
resistance at the open end varies as ~o2 for frequencies below the cut-off
tn* (which is given by eo*r/c ~ 2), while for frequencies above ~o* the
radiation resistance is nearly constant. Thus the radiated spectrum below
~o* has a high-frequency emphasis of 12 dB/octave relative to the internal
spectrum, while above co* the two are parallel.

The situation is similar for the more complex geometry of brass and
woodwind instruments, except that for brass instruments c0* is deter-
mined by the precise flare geometry of the horn (Morse 1948, pp. 265-88),
while in woodwind instruments with finger holes 09* is determined
largely by the transmission properties of the acoustic waveguide with
open side holes in the lower part of the instrument bore (Benade 1960b).

AIR-JET INSTRUMENTS

An essentially correct, though qualitatively expressed, theory of the
operation of air-jet instruments was put forward as early as 1830 by
Sir John Herschel (Rockstro 1890, pp. 34-35), but this was later neglected
because of preoccupation with the related phenomena of edge tones and
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130 FLETCHER

vortex motion in jets (Curle 1953, Powell 1961), which were made visible
in fine photographic studies like those of Brown (1935). While it is certainly
true that edge-tone phenomena are in some ways analogous to the action
of an air jet in an organ pipe, the mechanisms involved differ importantly
in the two cases (Coltman 1976). Similarly, while vortices are undoubtedly
produced by the jet in an organ pipe, tlkeir presence seems to be an
incidental second-order effect rather than a basic feature of the mechanism,
and a complete theory including all aspects of the aerodynamic motion
will inevitably be extremely complex (Howe 1975). Our best present
understanding is as set out below.

The basic geometry of an air-jet generator is illustrated for the case of
an organ pipe in Figure 3. A planar air jet emerges from a narrow flue
slit (typically a few centimeters in length and a millimeter or so in width)
and travels across the open mouth of the pipe to impinge more or less
directly on the upper lip. Acoustic flow through the pipe mouth and
associated with the pipe modes deflects the jet so that it blows alternately
inside and outside the lip, thus generating a fluctuating pressure that
serves to drive the mode in question. The blowing pressure in the pipe
foot is typically a few hundred pascals (a few centimeters, water gauge),
giving a jet velocity of a few tens of meters per second and hence a
transit time across the pipe mouth that is comparable with the period of
the acoustical disturbance, so that phase effects are certainly important.
The discussion below is in terms of the organ pipe geometry, but other
instruments of the air-jet type behave similarly.

Wave Propagation on a Jet

The work of Rayleigh (1879, 1896, pp. 376-414) provides the foundation
for understanding the behavior of a perturbed jet. He treats the case of a
plane inviscid laminar jet of thickness 21 moving with velocity V through
a space filled with the same medium, and he shows that a transverse
sinuous disturbance of the jet with angular frequency n = (n +jco’ and
propagation number k, such that the displacement has the form

y-- A exp [j(nt+_kx)], (8)

satisfies the dispersion relation

(n + k V)2 tanh kl + n2 ~-- O. (9)

Solving for n and substituting back in (8) shows that the wave on the jet
propagates with velocity

u = V/(1 + coth k/) (10)

and grows exponentially with time or with the distance x traveled by
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MUSICAL WIND INSTRUMENTS 131

the wave as exp (#x), where

/~ = k (coth kl)1/2. (11)

Equations (10)and (11) show that, at frequencies low enough that 
wavelength 2 of the disturbance on the jet is much greater than l, so that
kl ~ 1~ the propagation velocity u ~ kIV ~ (IVco)~/2, while the growth
parameter ~ ~ (k/l) ~/2. At the other extreme when ), ~ l, we find u ~ V/2
and ~ ~ k ~ 2co/V.

Rayleigh realized that these results are somewhat unrealistic since
the behavior of/~ for large e) predicts catastrophic instability for the jet
in this limit. He correctly identified the origin of this catastrophe in the
velocity profile assumed and went on to investigate jet behavior for jets
with smoother velocity profiles (Rayleigh 1896, pp. 376-414). He showed
that instability (/x > 0) is associated with the existence of a point 
inflection in the velocity profile, and that/~ is positive in the low-frequency
limit, increases with increasing frequency to a maximum when kb ~ 1,
b being some measure of the jet half-width, and then decreases to become
negative for kb ~ 2.

Further advance did not come until Bickley (1937) investigated the
velocity profile of a plane jet in a viscous fluid, showing it to have a
form like V0 sech2 (y/b), and until Savic (1941) examined the propagation
of transverse waves on such a jet in the inviscid approximation. This
and more recent work has been summarized by Drazin & Howard (1966).
If b is the half-width parameter defined by Bickley and J is the flow
integral defined by

f-~o [V(Y)]2 dy, (12)J=

where y is the dimension transverse to the jet, then the best numerical
calculations indicate

u ~0.95(bV~o)1/2 for O<kb _-<0.4, (13)

u ,,~ 0.65 (J(D) 113 for 0.4 =< kb < 2. (14)

Equation (13) is close to Rayleigh’s result while (14) is close to that 
Savic. The amplification factor/~ varies approximately as

/tb ,~ 0.74 [1 -exp (- 3kb)] -0.37 kb, (15)

this being an approximate fit to the calculated points in the range
0.1 =< kb < 2, which confirms Rayleigh’s investigation in that it has a
maximum near kb ,~ 0,6 and becomes negative for kb > 2.

.Few extensive exPerimental studies of wave propagation on jets
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132 FLETCHER

appear to have been made, though the work of Brown (1935) on vortex
motion, Sato (1960) on instability, Chanaud & Powell (1962) on 
tones, and Coltman (1976) on organ pipes bears on the problem. Most
useful is a recent study by Fletcher & Thwaites (1978) for low-velocity
jets as found in organ pipes. This work confirms a propagation velocity
close to that given by (14) at low frequencies, but shows that the wave
velocity saturates to a value/~®, given in SI units by

u~o ~ 50 3 (16)

for higher frequencies. Fletcher and Thwaites conjecture, on the basis of
dimensional analysis, a form

u ~ (J/v) f(voga/aJ-2/3) (17)

for the wave velocity u, where J is given by (12), v is the kinematic
viscosity of air, and the function f(z) has a form rather like

f(z) -- clz/(1 + c2z), (18)

where ca ~ 0.7, c~ ~ 1000. This reduces to (14) if the kinematic viscosity
is set to zero and to (16) if ~o becomes large. An interesting thing about
these experimental results and their theoretical counterparts is that,
since J is constant along the jet irrespective of viscous spreading, u is
similarly constant. Other observations confirm this.

The experiments give rather less specific informaffon about p but
agree with (15) to good approximation for kb <-_ 0.6. The experiments
also suggest that no amplification occurs for kb => 2. In the range
0.6 -< kb < 2, however, the experimental value of # is nearly constant
rather than decreasing smoothly to zero as predicted by the inviscid
theory.

It is perhaps important to note that the validity of many of the
theoretical calculations is restricted to wave amplitudes less than the jet
half-width b, while the experiments are all made for amplitudes larger
than b. It is not .known how important this distinction may be. The
theoretical and experimental results are also limited, as yet, to the
laminar-flow regime, while many musically important jets operate at
Reynolds numbers high enough to be turbulent.

Acoustic Perturbation of a Jet

We have now to consider the way in which the acoustic modes of a pipe
resonator interact, with a jet and induce the formation of traveling
waves upon it. The experimental studies of Brown (1935) show that the
perturbation takes place just at the point where the jet emerges from the
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MUSICAL WIND INSTRUMENTS 133

flue into the acoustic field, and Rayleigh’s discussion, with new values
substituted for u and #, shows how this occurs.

A jet flowing in the x direction in open air would be simply moved
backwards and forwards by an acoustic velocity field v cos cot acting
transversely to the jet plane, the displacement amplitude being (v/~o) sin
~ot. Such a displacement would not induce any wave motion on the jet.
When, however, the jet emerges into the field from a slit located along
the z-axis in the plane x = 0, the jet displacement is constrained to be
zero when x = 0. This is equivalent to superposing a local displacement
-(v/~o) sin cot on the general displacement produced by the acoustic
field. Such a localized displacement does produce waves traveling in the
_+ x directions on the jet, and the resultant displacement is (Fletcher 1976c)

y(x,t) (r ico){sin cot-cosh #xsin[co(t-x/u)]}. (19)

The form of y(x,t) is rather complicated for #x < 1, which means
within a few jet-widths of the slit, but it then takes the form of a
rapidly growing wave with constant propagation velocity. Extrapolation
of (19) to y values greater than the jet half-width is justified by studies
of the behavior of real jets in air, as seen from schlieren photographs or
from studies of smoke-laden jets (Cremer & Ising 1967, Coltman 1968).
Additional nonlinearities ultimately occur, however, and the jet breaks
up into a double street of vortex rings (Brown 1935) when the displace-
ment amplitude exceeds the wavelength on the jet.

Quite recently Coltman (1976) has studied phase relations in acoustic
disturbance and propagation on a jet in more detail. Although this is
not immediately obvious, the behavior he finds is in quite reasonable
agreement with the predictions of (19), while the residual disagreements
are at least qualitatively accounted for in terms of an expected slight
decrease in u near the jet flue (Fletcher & Thwaites 1978).

.let Drive of a Pipe

The basic mechanism by which a jet influences the modes of a pipe is
fairly straightforward. Clearly the jet is a low impedance source, since in
the absence of air flow the mouth of the pipe is effectively open. The
mouth impedance is, however, not exactly zero because of the end
correction at the mouth. Now when the jet blows momentarily inside
the pipe lip it provokes acoustic motion of the air column both through
simply adding to the acoustic flow velocity and also through building up
a local pressure that can drive the acoustic flow. These two views of the
dominant mechanism involved were put forward initially by Cremer &
Ising (1967) and by Coltman (1968) respectively.

More recently, Elder (1973) has given a more careful discussion, which
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134 FLETCHER

integrates these two approaches. ~’his has been extended by Fletcher
(1976b) and some of the implied phase relations have been checked
experimentally by Coltman (1976). In the case treated by Elder, the flow
of the jet Was assumed to be varied by modulating the flow velocity to
match an applied signal. Such a model, as discussed by Fletcher, leads
to a large amount of harmonic generation and thus complicates the
resulting equations. Fleteher’s assumption was that the jet flow is varied
by changing its cross section, an assumption better approximating the
situation in a real pipe and at the same time leading to the simplest
possible equations. The third alternative, in which the blowing pressure
follows the applied signal, does not seem to have been examined in
detail. Once the physical assumptions are made it is further assumed that
the jet interacts with the air in the pipe over a mixing length Ax, which
does not enter the final result provided it is very small compared with
the sound wavelength involved.

In terms of Fletcher’s model, the final result for the acoustic flow Up
into the pipe produced by a time-varying flow Us at frequency co in the
jet is given by (Fletcher 1976b,c)

Zs Up ~ [p(V +jeoAl)/Ap] Uj, (20)

where Ap is the cross sectional area of the pipe, p the density of air, Al
the end correction at the mouth, and Z~ the acoustic impedance of the
pipe and mouth in series. This equation is, in fact, equivalent to our
symbolic Equation (4) for one of the pipe modes.

In (20), both versions of the driving force appear. The term pVUs/Ap
can be written pV2(Aj/Av), where As is the cross section of the jet, and it
represents the pressure built up by the jet on entering the pipe, as
discussed by Coltman (1968), while the second term j~oAIV(Aj/Av) is the
velocity-drive term discussed by Cremer & Ising (1967). In practice for
most simple jets the second term dominates over the first, so that the
driving term on the right of (20) is ° inadvance of thejet flowUs in
phase.

Incidentally it is clear from (20) that the amplitude of the pipe flow
Uv is a maximum when the series impedance Z~, corresponding to the
pipe with both its end corrections, is a minimum. This confirms our
view of the jet as a low-impedance velocity-controlled generator and
shows that the pipe modes with which we are concerned are those giving
impedance minima when measured from just outside the pipe mouth.

Nonlinearity

While some of the terms neglected in (20) lead to slight nonlinearity 
behavior, the major nonlinear mechanism arises from quite a different
cause. We have already seen from (19) that a simple sinusoidal acoustical

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

97
9.

11
:1

23
-1

46
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 S
O

U
T

H
 W

A
L

E
S 

on
 0

6/
28

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


MUSICAL WIND INSTRUMENTS 135

influence on the jet leads to a Similarly sinusoidal deflection of the jet
tip where it strikes the pipe lip. The velocity distribution across the jet is,
however, of the form Vo sech2 (y/b) and its width b is finite, so that the
jet flow UI into the pipe varies, as a function of jet deflection, in a highly
nonlinear manner, saturating for deflections completely into or com-
pletely out ,of the pipe lip. The extent of the linear region is proportional
to the effective jet width 2b.

It is clear that, once the jet becomes fully switched from inside to
outside the pipe during each cycle of the fundamental, Uj will contain
considerable amplitudes of harmonics of all orders. This has been con-
sidered in some detail by Fletcher (1974, 1976c). The steady regime has
also been discussed in detail by Schumacher (1978a) using a powerful
integral equation approach and computer symbolic manipulation to keep
track of the coefficients involved.

System Implications and Performance

If we refer to Figure 1, it is clear on general grounds that the total phase
shift around the feedback loop must be zero for the system to operate.
If we take the acoustic flow v cos cot into the pipe mouth as reference, it
follows from (19) that the propagating-wave part of the jet displacement
at x = 0 is 90° in advance of this in phase. If the distance from the flue
to the pipe lip is d, then the transit time for the jet wave introduces a
phase lag of c5 = cod/u, where u is the wave velocity on the jet. Finally,
from our discussion ofthe dominant term in (20), there is a further advance
in phase of nearly 90° in the jet interaction coefficient. Thus, if the phase
loop is to close at the resonance frequency where Z~ in (20) is real, 
must have ~ ~ n, implying a phase shift of 180° or just half a wavelength
along the jet.

If this condition is not precisely met, then the oscillation frequency
must shift slightly away from resonance so that the extra phase shift can
be accommodated in the impedance factor Z~. Thus suppose that the
blowing pressure is raised so that the jet velocity increases and the
phase lag (5 along the jet decreases to n- ~. The right side of (20) is then
an amount e in advance of the reference, (which is essentially Up) 
phase. This can be accommodated if the impedance Zs has a phase e
with respect to Up, which requires that it be slightly inductive. Since the
pipe behaves at an impedance minimum like a series resonant circuit,
this implies that the increased blowing pressure must cause the sounding
frequency to rise slightly. This is exactly what happens in practice.

Air Jet Impedance

At this point it is helpful to change our viewpoint slightly, following
Coltman (1968), and to define an effective impedance Z~ for the air-jet
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136 FLETCHER

generator as viewed from inside the pipe mouth and with allowance
made for the unblown pipe-mouth correction, considered to be in series
with it. Because of our viewpoint from inside the pipe, if an acoustic
flow Up into the pipe causes the jet to produce an acoustic pressure p
inside the pipe lip, then

Z~ --- -e/t~p. (21)

Now the acoustic power delivered to the pipe by the jet is U~ Re (- Z~)
and the acoustic dissipation in the pipe is U~ Re (Zs), where Zs is the
impedance of the pipe and mouth in series, so that the condition for
stable or growing oscillations is that

Re (Zj + Zs) <- O. (22)

Since Re (Z~,) > 0, this implies that we must have Re (Z~) < 0 and 
pipe oscillation is favored at the impedance minima or admittance
maxima of the pipe with its mouth end correction taken into account.
This latter is just the conclusion reached from (20),

For stable oscillations we must have equality in (22), which is achieved
by the effect of nonlinearities on the magnitude of Zi, which decreases
steadily with increasing U~. Since the flow U~, must be continuous
through the system, we must also have

Im (Z~+Zs) = 0, (23)

which implies that if Z~ is inductive so that Im (Z~) > 0, then Im (Z~) 
and from (1), using an effective length l to include the mouth correction,
the sounding frequency must be lower than the resonance frequency of

80

_0~.1
20

generating dissipating

Figure 5 Measured complex acoustic impedance Zj of a jet-driven acoustic generator
with flutelike geometry, as a function of blowing pressure shown in pascals as a parameter
(l-era water gauge = 100 Pa), other parameters being normal for a flute jet. Measurement
frequency is 440 Hz and impedance is given in SI acoustic megohms (1 f~ = 1 Pam-a s).
(After Coltman 1968)
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MUSICAL WIND INSTRUMENTS 137

the complete pipe. If Z~ is capacitative, then the sounding frequency will
be above the resonance frequency.

In an elegant series of experiments, Coltman (1968) measured Z~ as 
function of blowing pressure for a flutelike jet system. One of his
measured curves is shown in Figure 5. The spiral form of the curve is
caused by the varying phase shift for waves traveling along the jet, while
the magnitude of Z~ is a rather complicated function of the amplification
factor # and the interaction expression (20) as functions of jet velocity
and thus of blowing pressure. Qualitatively similar curves are to be
expected for organ pipe jets.

The design and voicing of organ pipe ranks to produce optimum
attack and sound quality is an art, the practical results of which conform
fairly generally with the expectations derived from the theory (Mercer
1951, Fletcher 1976c). The much more complex situation of performance
technique on flutelike instruments is also well accounted for (Coltman
1966, Fletcher 1975). In particular, the flute player adjusts the blowing
pressure and air-jet length (increasing the first and reducing the second
for high notes) in such a way that the phase relations requisite for stable
oscillation are satisfied only in the vicinity of the particular resonance
peak corresponding to the fundamental of the note he wishes to sound.
An experienced player, for example, can easily take a simple cylindrical
pipe with a side hole cut in its wall and the near end closed with a cork,
thus producing a flutelike tube with an impedance curve like that in
Figure 2, and blow steady notes based upon each of the first six or more
impedance minima.

The loudness of sound produced by the instrument is controlled almost
entirely by varying the player’s lip aperture and hence the cross section
of the jet, since blowing pressure must be set fairly closely to meet the
phase requirements on the jet. It is still possible, however, for the player
to vary the sounding frequency of a note by varying the blowing pressure,
though frequency control is more usually achieved by altering the lip
shape and hence the end correction at the mouthpiece. This and more
subtle aspects of performance technique can also be understood on the
basis of the theory (Fletcher 1975).

REED AND LIP-DRIVEN INSTRUMENTS

Common instruments of the woodwind reed family include the clarinet,
which has a single-reed valve, as shown in Figure 4(a), driving a basically
cylindrical pipe, the saxophone, which has a similar reed driving a
conical pipe, and the oboe and bassoon, which each have a double reed,
as in Figure 4(b), driving a conical pipe. In all these cases the application
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138 FLETCHER

of blowing pressure tends to close the reed opening, and we say that the
reed strikes inwards. In brass instruments like the trumpet or trombone
the player’s lips form a type of reed valve as shown in Figure 4(c) but 
this case the blowing pressure tends to open the lip aperture and we say
that the reed strikes outwards. We have already discussed the complex
geometry of brass instrument horns. In what follows we perforce ignore
the large amount of careful and detailed work that has been done on
the shape of the air column and the behavior of finger holes (_Backus
1968, 1974, Benade 1959, 1960b, 1976, Nederveen 1969) and concentrate
on the way in which sound is produced by the reed generator, using this
term to include lip reeds.

In its essentials the behavior of a reed system coupled to a pipe was
first correctly described by Helmholtz (1877, pp. 390-94), and it was 
who clearly made the distinction between reeds striking inwards and
outwards. He showed that an inward-striking reed must drive the pipe
at a frequency that is lower than the resonant frequency of the reed,
viewed as a mechanical oscillator, while an outward-striking reed must
drive the pipe at a frequency higher than the reed resonance. Work since
that time has concentrated largely on the clarinet reed, with important
advances in understanding (Backus 1961, 1963, Nederveen 1969, pp.
28-44, Worman 1971, Wilson & Beavers 1974). There has been relatively
little work on details of sound generation in brass instruments (Martin
1942, Benade & Gans 1968, Backus & Hundley 1971, Benade 1973). Our
discussion is based largely on a recent paper by Fletcher (1978b), which
incorporates this earlier work and at the same time makes possible a
unified treatment of all types of reeds.

Reed Generator Admittance

Just as with the air-jet generator, it is helpful to define an impedance
or in this case more conveniently an admittance Y~- Z;-a for the reed
generator as viewed from inside the mouthpiece of the instrument. If p
is the mouthpiece acoustic pressure and U the acoustic volume flow
through the reed into the pipe at some frequency co, then

Y~ = -- U/p. (24)

An acoustic pressure p thus leads to acoustic power generation p2 Re (-
by the reed and power dissipation p2 Re (Yp) in the pipe, where Yp is the
input admittance of the mouthpiece and pipe measured at the reed
position. If sound generation is to occur then we must have

Re (Y~+ Y~) =< (25)
by analogy with (22) for the velocity-controlled air jet. When stable
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oscillation is achieved (25) must become an equality, with nonlinear
effects reducing ]Y~I at large amplitudes, while the frequency is deter-
mined by

Im (Y, + Yp) = (26)

Oscillation is thus always favored near frequencies for which Re (Yp) is a
minimum, that is at the impedance maxima of the pipe. We thus expect
a clarinet to produce a series of odd harmonics, a saxophone, oboe, or
bassoon to produce a complete harmonic series, and a brass instrument
of good design to produce a harmonic series that is complete except for
the "pedal" note based on the fundamental.

To evaluate the admittance Y~ of the reed generator we must examine
the way in which the reed opening and the flow U through it vary with
blowing pressure P0 and with internal mouthpiece pressure p. We can
formulate this in such a way that it applies to reeds striking in either
direction. Because the blowing pressure Po is relatively high, the flow U
through the reed opening is determined largely by Bernoulli’s law,
except that we should recognize that, because of the peculiar geometry
of the reed opening, there may be slight deviations from the simplest
expected behavior. At very low frequencies we can therefore write

U = B’b~(po- p)", (27)

where b is the breadth of the reed opening (assumed constant) and ~ the
height of the opening, which varies according to the net pressure acting
on the reed; e and fl are constants which for simple Bernoulli flow would
have the values e = 1, fl = 1/2; and B’ is another constant which for
simple Bernoulli flow would equal (2/p)~ where p is the density of air.
In fact, from measurements on a clarinet mouthpiece and reed, Backus
(1963) found e ~ ~,/3 ~ ~}, which values differ appreciably but not very
significantly from those expected for simpler geometry. We therefore
retain the general form (27).

When the mouthpiece pressure p fluctuates at a normal acoustic
frequency we must also include the impedance of the mass of air that
must move in the gap at the reed tip. If the effective length of this small
channel is d, then the acoustic inertance of this mass of air is pa/b~, and
we can rewrite (27) in the form

Po - p = B~- ~/aUI/P + (pd/b0 (dU/dt), (28)

where we have written B for (B’b)-1/~. There should really be an addi-
tional term in (28) to allow for viscous losses in the reed channel, but 
neglect this for simplicity since it is generally small.

We must now recognize that the reed opening ¢ will vary in response
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to both the blowing pressure Po and the mouthpiece pressure p, with the
reed system behaving like a mechanical resonator of mass m, free area a,
resonant frequency co,, and coefficient of damping ~, which perhaps is
provided largely by the player’s lips. The appropriate equation for reed
motion is then

+ co,~ (~- ~o)] sa(po -p),   (29)

where ~o is the reed opening with the lips in position but no blowing
pressure applied. The parameter s has the value -1 for an inward-
striking reed generator and + 1 for an outward-striking lip generator.
Clearly, for the inward-striking case, if Po exceeds p~ = (m~/a)~o, the
reed will be forced closed by the static blowing pressure and no sound
generation can take place. No such blowing pressure limit applies to
outward-striking reeds.

Further analysis of the system involves substitution of a Fourier series
for each of the acoustic variables ~, p, and U in (28) and (29) 
examination of the resulting mode equations. Because (28) is quite non-
linear, there is a good deal of mixing between different modes, and this is
important to the behavior of the instrument. Retaining only the linear
terms, however, gives us considerable insight into the small-signal
behavior.

Even in the linear case the formal result for the reed admittance ~ is

0-!

-04

Figure 6 Calculated real part of the acoustic admittance Yr in SI acoustic micromhos
(1 f~ 1 = 1 3 Pai s 1)for typi cal reed -valve generators above the crit ical blow ing
pressure pp. Broken curves refer to woodwind-type reeds (s = - 1) and full curves to lip
reeds (s = + 1). The generator resonance frequency is ~o, and its damping coefficient ~, 
given as a parameter. (After Fletcher 1978b)
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complex, and its meaning is not transparent (Fletcher 1978b). It is there-
fore better ~o look at the results of typical calculations. Figure 6 shows
the real part of Y, plotted as a function of frequency for both cases s = + 1
and for a blowing pressure somewhat less than the closing pressure p~
for the s = -I case. Clearly from Figure 6 Re (Y,) is negative in the
case s = - 1 only for ~o less than the reed resonance frequency ~o,, while
Re (Y~) is appreciably negative in the case s = + 1 only for a small frequency
range just above co,. The behavior in the two cases is thus very different.
in fact it is not very hard to see why this is so. In the s = - 1 case with
co < co,, the reed behaves in a springlike manner and always tends to
open when the mouthpiece pressure rises. In the s = + 1 case with 09 > ~o,
the reed behaves like a mass load and thus moves out of phase with the
mouthpiece pressure, once again opening the reed aperture as the mouth-
piece pressure increases. A plot of the static behavior (27) for s = 
clearlyindicates a negative resistance region between some critical pressure
p] and the closing pressure p~, and it is in this region that the instrument
operates in either case, the phase shift in reed motion referred to above
effectively cancelling the sign of s.

Another informative plot is given in Figure 7, which shows the behavior
of the complex reed admittance Y~ for the two interesting cases s = _2" 1,
co < co, and s = + 1, co > co,. The critical pressure for operation p8 is
apparent in each case, as well as the closing pressure p~ when s = -1.
We also see, remembering we are dealing with admittances now rather
than impedances, that a woodwind reed with s = - 1 presents a capacita-
tive impedance to the pipe near one of its impedance maxima so that the
sounding frequency must be slightly below the pipe resonance frequency
to match the imaginary parts of the admittances as required by (26).

0"1

generating 1 diSsil:)ating
-o’.2 -o~1

~ ’

.~ 50
0"°1i O.Ol

Figure 7 Calculated complex acoustic admittance Y, in SI acoustic micromhos for typical
reed-valve generators as a function of blowing pressure po, shown in kilopascals as a
parameter (1-era water gauge = 0.1 kPa). (a) A woodwind-type reed with s = -1 
co = 0.9 ~o,; note that the reed closes for p > pb. (b) A lip-valve with s = + 1 and ~o = 1.1 09,.
(After Fletcher 1978b)
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Conversely, for the brass instrument case s = + i, the generator imped-
ance is inductive and the sounding frequency must lie a little above one
of the resonance impedance maxima of the horn.

Nonlinearity and Performance

Inspection of Figure 6 for a woodwind reed shows that two possible
modes of operation are possible. If the reed damping ~: is very small, as
could be achieved for example with a metal reed, then the pipe will
sound at a frequency close to the reed resonance ~or and associated with
whatever pipe mode lies in this frequency range. This is the situation
with the reed pipes of pipe organs, which are tuned by adjusting the
resonance frequency of the reed. If, however, the damping is large so that
K approaches unity--a condition that can be achieved by the loading
effect of the soft tissue of the player’s lips--then the reed admittance has
a nearly constant negative value for all ~o < ~or and the pipe will sound
at the frequency that minimizes Yp and is thus at the highest of the pipe
impedance maxima. This is essentially the playing situation in woodwind
instruments, o~ being as much as 10 times the fundamental frequency
of the note being played.

Actually the nonlinearity of the reed behavior makes the situation
rather more complex, as has been emphasized many times by Benade
(1960a; 1976). Because all the pipe modes are coupled through the non-
linearity of the reed generator, the pipe impedance that is important is
not just that at the frequency of the fundamental but rather a weighted
average over all the harmonics of that fundamental. If the instrument is
well designed then its resonance peaks will be in closely harmonic
relation, the weighted impedance will be large, and the instrument will
be responsive and stable. If, however, some of the resonances are mis-
placed, not only will the weighted impedance be lower, giving a less
responsive instrument, but also the frequency at which the weighted
impedance is greatest will depend on the harmonic content and thus on
the dynamic level or loudness, giving the instrument an unreliable pitch.

Worman (1971) has examined the effects of nonlinearity in clarinetlike
systems for playing levels small enough that the reed does not close, and
he has shown that, within this regime, the amplitude of the nth harmonic
within the instrument tube, or indeed in the radiated sound, is propor-
tional to the nth power of the amplitude of the fundamental. This is, in
fact, a very general result that applies to nearly all weakly nonlinear
systems and so to all wind instruments in their soft-playing ranges,
provided adjustment of lips or other playing parameters are not made.
The result no longer holds in the highly nonlinear regime in which the
reed closes. Schumacher (1978b) has also applied an integral equation
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approach combined with computer symbolic manipulation to this
problem and has been able to obtain a steady state solution essentially
complete to all orders. These extended results confirm the simpler
approximations in general terms while introducing modifications in
detail.

The onset of this highly nonlinear regime determines the maximum
amplitude of the internal acoustic pressure, the peak-to-peak value
of which is essentially equal to the difference between the minimum
generation pressure p~ and the closing pressure p~. Each of these pres-
sures, and so the difference between them, increases linearly with the
unblown reed opening ~o, so that to produce a loud sound the player
relaxes his lip pressure and allows the reed to open. Relatively small
changes in blowing pressure may also be made, largely to adjust tone
quality, and the playing pressure used for clarinets and oboes does not
vary much from 3.5 kPa and 4.5 kPa (35 and 45 cm water gauge) respec-
tively over the whole of the dynamic and pitch range.

Because a woodwind reed operates well below its resonance frequency
it behaves like a simple spring, so that its deflection accurately reflects
the acoustic pressure variation within the mouthpiece. A study of the
clarinet reed by Backus (1961) shows this deflection to have nearly
square-wave form as we should expect. Instruments such as the oboe
and bassoon may have a pressure wave of less symmetrical form (Fletcher
1978b).

Performance on brass lip-valve instruments is quite a different matter.
Figure 6 shows that the lip valve has a negative conductance over only a
small frequency range just above the lip resonance 0)r, so that playing
must be based upon this regime and the lip resonance frequency adjusted
so as to nearly coincide with the appropriate horn impedance maximum.
In fact, skilled French-horn players can unerringly select between reson-
ances lying only one semitone apart (6~ in frequency), which implies
that the damping coefficient x for the lip vibrator must be less than about
0.1. Such a low value is probably not achieved by the lip tissue unaided
by other effects, even under muscular tension, and it seems probable
that the regenerative effect of the mouth cavity, fed by an airway of
finite resistance, acts to decrease the effective value of the damping
(Fletcher 1978b).

Because the lip valve responds only close to its resonance frequency,
its motion is quite closely sinusoidal, just closing during each cycle
(Martin 1942). Despite this, the sound of brass instruments is rich in upper
harmonics, specially in loud playing (Luce& Clark 1967), and Benade’s
general principles on the alignment of resonances still apply. The primary
cause of harmonic generation once again arises from the nonlinearity of
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the flow equation (27) and particularly from the fact that, when the lip
aperture is wide, the instantaneous generator admittance may fall below
that of the horn in magnitude, thus failing to satisfy (25) or, nearly
equivalently, driving the pressure difference Po- p below the critical value
p~ (Backus & Hundley 1971). Because of this one-sided limiting effect

’ and the fact that a brass instrument horn has a nearly complete harmonic
resonance series, the mouthpiece pressure waveform has a general shape
approaching that of a half-wave-rectified sinusoid.

However, this effect is probably not the only cause of harmonic genera-
tion at high sound levels, which may exceed 165 dB in a trumpet mouth-
piece. One" must certainly suspect an additional acoustic nonlinearity in
the relatively narrow constriction connecting the mouthpiece cup to the
main horn of the instrument (Ingard & Ising 1967). We must also
remember the transformation function between internal and radiated
sound-pressure spectra, which greatly emphasizes the upper partials of
the sound.

Finally we should remark that, because increased blowing pressure
tends to open rather than close the lip aperture in brass instruments,
there is no limit (oiher than physiological) to the blowing pressure that
can be used. The sound output is determined by a combination of lip
opening and blowing pressure using the same general principles as set
out for woodwind instruments, except that at the highest sound levels
we may expect additional losses and inefficiencies because of increasing
turbulence and other nonlinearities in flow through the lip aperture
and mouthpiece cup.

CONCLUSION

Our review has shown the subtle variety of air flow responsible for
sound production in musical wind instruments and has indicated the
extent to which the behavior of the generators involved can be said to be
understood. Clearly a great deal of work remains to be done.

Individual wind instruments typically have a dynamic range of 30 to 40
dB and acoustic output powers ranging from 10-6 W for the softest note
on a flute to 10-1 W for a fortissimo note on a trumpet or tuba. The
maximum efficiency with which pneumatic, power is converted to acoustic
power rarely exceeds 1 ~ (Bouhuys 1965, Benade & Gans 1968). Within
these limits, however, the experienced player can achieve an extra-
ordinarily sensitive control of pitch, dynamic level, and tone color in the
steady sound of his instrument and a comparable variety of vibrato and
of attack and decay transients. It is both a challenge and a useful task to
try to understand how this is done.
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