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Summary - .

A general approach is developed to the calculation of transients in the speech or organ flue
pipes through approximate integration of a set of coupled non-linear differential equations for
the normal modes interacting through the air jet driving the pipe. Illustrative examples are
calculated for the cases of plosive, abrupt and.slow rises of pressure in the pipe foot. It is con-
cluded that the form of the pressure transient has a large effect on the pipe speech transient,
_ a plosive attack emphasizing upper partials. In most cases the second pipe mode is found to
develop more rapidly than the fundamental and to be dominant in the early part of the speech
transiént, in agreement with experiment. The frequencies of the upper partials are not initially
harmonic, being determined by the pipe resonances and the reactive component of the jeb im-
pedance. In the later stages of thie transient all modes are locked into harmonic relationship a

in the steady tone. _ ‘

;U’be%g:a}ng'svorg&ngev beivder .Anspracke von Orgelpfeifen — Eine theoretische Untersuchuhg

Zusammenfassung .. ~

Es wurde ein allgemeines Verfahren zur Berechnung von Ubergangsvorgingen bei der An-
sprache von Orgelpfeifen entwickelt, welches in der ndherungsweisen Integration eines Systems
gekoppelter nichtlinearer Differentialgleichungen fiir die Normalmoden besteht, die durch den
die Pfeife anregenden Luftstrom miteinander in Wechselwirkung stehen. Fiir die Falle explosions-
artigen, abrupten und langsamen Druckanstieges im Pfeifenfull werden einige anschauliche
Beispiele berechnet. Bs wird der SchluB- gezogen, dafl die Art des Druckverlaufes einen groBen
EinfluB auf die Ubergangsvorginge bei der Pfeifenansprache besitzt. Ein explosionsartiger An-.
stieg hebt die. hochliegenden Teilténe an. In den meisten Tillen konnte festgestellt werden, daB
die zweite Pfeiferimods sich wesentlich schneller entwickelt als die Grundmode uhd daB sie im
Anfangsteil des Ansprachevorganges in Ubereinstimmung mit dem Experiment dominiert. Zu.
Beginn liegen die hochliegenden Teiltone unharmonisch zueinander. Thre Lage wird: durch die
Pfeifenresonanzen und die Blindkomponente der Luftstromimpedanz bestimmt. In der spiteren
Phase des Ubergangsvorganges werden alle Moden wié beim stationiren Ton harmonisch gezogen.

Les transitoires des tuyauz d’orgue. étude théorigue

Sommaire ‘ v

. On met au point une méthode générale pour calculer les’,tra,nsiﬁoires de tuyaux d’orgue, qui
‘passe par l'intégration approchée d’un ensemble d’équations différentielles non linéaires couplées,
exprimant les modes normaux qui interagissent par lI'intermédiaire du jet d’air qui excite le -
tuyau. On donne des exeimples du calcul pour des montées de pression au pied du tuyau plosives,
brusques et lentes; on conclut queé la forme du transitoire de ‘pression exerce une influence im-
portante sur le transitoire du son du tuyau, une attaque plosive favorisant les partiels supérieurs.
Dans la plupart des cas, oi trouve que le second mode du tuyau §’établit plus rapidement que le’
fondamental, et prédomine dans les débuts du transitoire du son, ce qué 'expérience confirme.
Les fréquences. des partiels supérieurs ne sont pas harmoniques au débus, déterminées qu’elles
sont par les résonances du tuyau et par la composante réactive de I'impédance du jet. Aux stades
ultérieurs du régime transitoire, tous les modes sont fixés en des rapports harmoniques, tout

~comme ils le sont dans le régime établi.

1. Introduction

Tt is well known thé,t much of the characteristic

quality of many musical sounds derives from the
attack transient, although the harmonic structure
of the steady tone (if there is a steady tone) is also
clearly important. The decay transient for sound
sources like organ pipes is generally of less impor-

tance, being influenced considerably by th
properties of the building.

The attack transient in organ flue pipes has bee
recognised as an important musical variable 10
several centuries and organ builders have learnt ts
control the initial “‘chiff” of these pipes so as b
make it uniform throughout the rank or even b
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eliminate it through nicking of the languid. It is
also well known that the design of the windchest
and of the valve admitting air to the pipe foot can
have a considerable effect on the character of this
initial transient.

Although the sounding mechanism of organ flue
pipes has been the subject of detailed investigation
for many decades, our understanding of the

complex phenomena involved is still little more than’

rudimentary. The action of the air jet on the air in
the pipe is almost completely described by recent
work of Elder [1], building on earlier studies by
Cremer and Ising [2] and by Coltman [3], but ‘the
equally important questions of the action of the
acoustic current from the pipe mouth in perturbing
the jet [4] and of the propagation of these distur-
bances along the jet are still largely unexplored.

The study of the harmonic structure of organ
pipe sound is well advanced experimentally and
the physical ad]ustments contributing to the timbre
are known at least qualitatively [5], but detailed
- treatment of the underlying physical principles is
still. in its early stages [6], [7], [8]. The existing
- theory for flue pipes [8] is, however, sufficiently
det'reloped that it is not unreasonable to consider
the more difficult problems of transients.

The purpose of the present paper is to lay the
foundations for a general theoretical discussion of
transients in flue pipes, to identify the significant
variables and to ‘calculate several illustrative
examples. The theory to be presented is' quite
‘general and applies to all sorts of transients
" including the vibrato produced in organ pipes or
- flutes by rhythmic variation of blowing pressure
[9], [10], but our present interest is largely with

_ the initial transient.

Experimental studies on the attack transient
have been carried out by Nolle and Boner [11] and
by Keeler [12], among others, but the lack of a
theoretical framework for interpretation of the

. measurements has reduced their usefulness. An

extensive investigation has now commenced in this
- laboratory based upon study of the parameters
1de11t1ﬁed in the theory as bemg of major signifi-
cance.

2. The organ pipe as a system

Rather than considering the organ pipe as a
single entity, it is convenient, and indeed necessary
at this stage, to divide it into several sub-systems
and to consider the interaction between these.
. For our present purposes a division into two such
sub-systems is sufficient. The first is the air column

. . of the pipe — a very nearly linear resonant system
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with an ‘infinite number of normal modes. The
second is the jet system, including its interaction
with the pipé lip — a highly non-linear system
which may or may not have natural resonance
frequencies but does certainly have regimes for
which its incremental impedance is negative.
Finally there is the mechanism which couples these
two systems together.

Treatment of the pipe as a resonant system is
straightforward and is covered in all standard texts
on acoustics [13]. For our present purposes it is
sufficient to note that the pipe has a series of normal
modes with (angular) frequencies n; which are-in
approximate but not exact harmonic relat10nsh1p
These modes are damped by viscosity radiation and
thermal conduction [14] so that the displacement z;

- of the sth mode obeys an equation of the form -

B bd ot nlo=LF0) (1)

when acted on by an external force F (t) IfF (t)is held
constant in amplitude but is varied in frequency, :
then the amplitude of the velocity resonance is
proportional to A;/k; and its width to %;. The
response curve for the pipe, determined for example
by applying a sound wave of frequency w and
constant pressure amplitude to the pipe mouth and
measuring the maximum sound pressure inside the
pipe as a function of w (or, to sufficient approxima-
tion, by measuring the pressure amplitude .of the
wave radiated from the other end of the. pipe), is &
superposmlon of responses of type (1) from the
various normal modes of the plpe

The jet system is much more difficult to treat,
but an approximate description along the lines of
that developed previously [3] will suffice at present.

- The jet, on emerging from the narrow slit defined by

the edge of the languid and the lower lip of the pipe
mouth, is sensitive to displacement by the fluid
motion v = > ; through the mouth of the pipe. If
the acoustic flow is out of the pipe mouth, then the
jet is deflected outside the upper lip and the
pressure falls, while if the acoustic flow is inwards -
the jet is deflected inside the upper lip and raises
the pressure in the pipe near the mouth. For a
steady velocity » into the pipe mouth, the driving

force F produced by the jet has a form.like that

shown in Fig. 1. The curve is sigmoid in shape and,
due to offset of the initial jet direction, is not
generally antisymmetric about »=0. The driving
force F' for this static case can thus be written as
a power series expansion

F=co+c1v+cov® 4 cgvd +--- (2)

where the coefficients ¢, are fuqctions of vhe blow-
ing pressure p. Terms at least up to v3 are necessary
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Fig. 1. Static interaction curve showing the force F gen-
erated by the jet under influence of an air flow of velocity v

‘into the mouth of the pipe. The broken curve shows a cubic
apprommatmn whlch is adequate between points A and B.

0 gi{re a reasonable approximation to the shape of

the curve; as shown in Fig. 1.

For the oscillatory case in which we are mterested
however we must recognise that the acoustic
velocity v acts on the. jet as it leaves the shit [4]
while the resultmg pressure response is produced at
some time § later, where 0 is the time. for the dis-
placement to travel across the mouth of the pipe
along the jet: To be completely general we should

_ recognise that the jet may be dispersive, so: that 0

may depend on frequency,. and there may be a
further phase shift A during the interaction process.
If, then, we let w; be the actual vibration frequency
of the mode. associated with the resonance n;, we
can generahze eq. (2) to write

i=1

The total behaviour of the coupled non-linear
pipe/jet “system is now specified by the set of

~ equations (1) with the specific mterpretatlon (8) for

F(t). Tt is with the solution of this set of equations
that we shall now be concerned.

3. The system equations

. The set of equations (1), (3) can be written in the

& + ni2w; = fi (%)) 4)
where ‘
fi@)) = —kiws + A F (%1, 22, ...) (5)

and in this form we recognise eq. (4) as being the
equation studied by Van der Pol [15] and sub-
sequently given considerable attention by Bogoliu-
bov and others [16], [17].

An exact solution for this set of coupled non-
linear differential equations is, of course, out of the
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question. Fortunately a solution of sufficient
accuracy for our present purpose can be obtained
by applying the most elementary methods developed
by these workers — the approach known as the
method of slowly varying parameters. We expect
this approach to be valid when the form of the
oscillation does not vary very greatly from one
cycle to the next, a situation generally found in
organ pipe transients. The formal condition for the
validity of the method relates to the smallness of
the function f; relative to the individual terms on
the left side of eq. (4). We shall state this condition
more precisely later.

Consider eq. (4). Provided f; is small eompared
with terms on the left side, we expect that the . |
solution can be written

@ = ag sin (it + Bi) : (6)
where w; ~ n; and both a; and §; vary slowly with o
time: There is a certain indeterminancy about this
spemﬁcatlon which we .can remove by requiring
that #; have the form ,

24 = G4 Wy COS (coit + By (7).
which iniposes the condltlons '

a;sin(wst + Bi) + as ﬂi cos (w;t —i— ﬂi) =0. (8)
Substituting ‘eqs. (6) and (7). back mto eq. (4) now-
gives
— azwzzsm(wzt ~+Bi) + a; w; 608 (Wit + Bi) — o
'—azwiﬂzsm wzt"‘lgz)'*" l

4 ni2 a;sin (w;t —l—ﬂz = fi(a;) 9)

which, using eq. (8) gives

-

1
P fa(zs) sin(wet + i) +

n2 — o

. (4] . 4
I - — gin? (w‘it + Bi)

(10)

(2

. 1 . . :
a; = — fi(xj) cos (wit + Bi) — (1)

a (n 2 — ) |
———5 wzt—l—ﬂz ) cos (wst -+ Bi) -
Wi

This is all, so far, quite rigorous. We now, however,
follow Van der Pol and replaee these exact time
derivatives by their average values, found bj’
integrating egs. (10) and (11) over a period of the
vibration. If the vibration were stationary then
this too could be done rigorously by extending the
integration to infinity and would select Fourier
components of frequency w; out of f;(z;). As it is,
the integration serves only to make an approximate
separation of these components. Denoting the
average by (>, we can write ,
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By = — (s (3) sin (@4t + Bo)> +
’)717;2 —_ 0.)@‘2
g 2)
. 1 .
Gy = — <fi(xj>.. cos (it + Bi)> - (13)

In keeping with our aim. of descrlbmg the oscilla-
tions in the pipe by equations like (6) with a; and
B; varying slowly with time, the averages in egs. (12)
and (13) must be interpreted so as to neglect
rapidly oscillating components arising from the
short integration interval and retain only the major
secular components which havé the same trend
over many cycles of the osclllatlon The solution is

satisfactory if <,8,> and {a;> are small compared
with w; and a; respectively.

In principle the averages in egs. (12) and (13)
could be evaluated using the full form of the func-

(P =—
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tions f;(z;), but the fact that the mode frequencies
w; are in approximate harmonic relationship makes
the series expansion explicit in egs. (3) .and (4)
convenient. This expansion is also necessary if we
are to make further progress with the formalism.
To make this clear, we note that the nth power
term in eq. (3) will contain, when the forms (7) are
inserted for #;, terms varying with erquency
@=wj+ wrd ;... where there are n terms in
this sum. The averaging procedure in eqgs. (12): or
(13) first converts w to w4 w; and then retains
only the slowly varying terms for which w -+ w; = 0.

With this prescription an arbitrary number of
pipe modes can be considered and the jet charac-
teristic expanded to an arbitrary number of terms.
Only the algebra becomes complicated. To illustrate
the forms of expressions obtained we consider, the
first three modes of an open pipe, for which n; ~ 473,
with the jet characteristic expanded up to cubic
terms. We find, from eq (12),

(A1/2a1 w1) {01 a1 w1 sin (w1 61 + A1) + ca a1 a2 01 wg sin [(2w1 — d2) t’—l; w2 09 — w101 +

+ 281 — P2+ Aa — A1]+ e aza3 w2 w3 sin [(w1 + wz — w3)t + w38 — wa da+ f1 +

+ Bo— s — Az + A3] + Eesar® ag w1® wssin[(Bwy — ws)t + wsds — 2w1 61 + 31 — fa—

— 241 + A3] + $c3a2® as w2? wzsin[(w1 + w3 — 2w2) ¢ — w3 O3 + 2wa bz + P14+ Pz —

— 2B — A3+ 245] 4 Z o3 (13 013 + 201 02% 01 w22 + 203 a3? w1 w3?) sin (w161 + A1)} +

+ (m? — w1%)[201 | (14)
a1y = — §hrar + )»1/2 w1) {...cos...} (15)

- where the expression {...cos...} in eq. (15) is the
“same as {} in eq. (14) Wlth sin replaced by cos
throughout. The expressions for <ﬂg>, (/33), {ag)
and {ag)> have similar forms to these and are given
in the appendix.

With the aid of these formal expressions, explicit
values for the jet coefficients c¢p (Which may be
time-dependent), and a set of initial conditions, the
problem can now be solved by simple numerical
integration. We shall pursue this-in the next
section. Meanwhile, several important observations
can be made.

First consider the steady state. The “instantane-
ous frequency”’ (to use an inexact term) for the

mode ¢ is w;+ Bi From the form of the expression
(14) for /31 and the similar expressions for the other

,81, the condition that §; be 1ndependent of time is
that '

wi+/3;i=i(w1—|-1§1)

so that the frequencies of the pipe modes are locked
into harmonic relationship. This is the normal
“musical”” mode for a flue pipe. The actual funda-

(16)

mental frequency and the amplitudes of the
harmonics are determined by the combined solu-
tions of the mode equations, which are identical
with those used in the earlier analysis of the steady
tone [8].

The condition for a steady, non-zero a,mphtude is
that <a;>=0 for some non-zero a; while {a;>>>0
as a;—0. For the ith mode, from the analogue of
eq. (15), this requires as a first approximation

A;c1 cos (607;_61; + A) >k 17

which states that the appropriately phase-retarded
regeneration coefficient should exceed the damping
coefficient. The equilibrium amplitude for which
{a;>=0 depends upon the non-linear terms in -
eq. (15). Even if eq. (17) is not satisfied, there will
generally be some component with frequency near
n; generated by interaction between other modes
whose frequencies differ by approximately 7;.
Other ‘“‘non-musical’” modes of pipe behaviour
which approximate a steady state also exist over
certain ranges of the coefficients and these can be
observed experimentally with many organ pipes,
usually in the pressure range just before over-
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blowing occurs. An example frequently found in
practice ocours when eq. (17) is strongly satisfied
for modes 2 and 3 but is either not satisfied or else
*“only weakly satisfied for the fundamental mode 1.
In this case amplitudes ag and a3 are large but a; is
small. Now an examination of eq.(14) and the
similar equations for (Bz) and (Bs> shows that
modes 2 and 3 cannot couple except through small
- high-order terms like csas2a3? sin[(3 ws — 2ws)t] or
“through terms like c¢ga;agsin (w3 — we — w1)t]
which are small because a; is small. Thus modes 2
and 3 remain nearly uncoupled and can adjust
themselves so that wg ~ ns, ws~ %3 and are then
not harmomcally related. The cross terms then
produce a component w; near the fundamental
resonance frequency #; which is modulated by
term§ varying like sin[(ws— g — w1)t] which
appear as unpleasant beats. This is exactly the
observed behaviour [18].

4. Jet and pipe parameters

Tt is not: our purpose here to give any.. deta,ﬂed
attentlon to the behaviour of the air jet. Elder [1]
has alrea,dy done this for an axial jet with modulated
flow but the discussion of physically realistic flue
pipe jets is in a much less well developed state. The
discussion given by Coltman [3] as developed in
our previous paper [8] will serve for our present
purpose. When a better description of the jet
becomes available it can easily be inserted in our
discussion ‘at this point. ,

If we adopt the convention of expressmg the
blowmg pressure p in millibars (or, almost- equi-
~ valently; in centimetres of water head) and accept

~ that the phase velocity for transverse disturbances .

on the jet 1 to 2 mm thick is a fraction «~ 0.4 of
the jet’ ‘stream veloc1ty [4], then the propagation
delay 6 for & jet length (plpe cut-up) 1 cm is

8=8X10-47p-1/2-1g. (18)

We neglect any frequency dispersion. We also
assume, as discussed previously [8] that

A~z
again neglectlng any frequency dependence Let us
also, without further discussion, adopt the jet and
pipe dimensions in our earlier paper [8] — jet cross-
section 8 cm X 0.1 cm; jet offset 0.01 cm, pipe
cross-section 10 cm?, mouth cut-up I=1 cm — and,
accept the derived jet parameters

Co.— 30 P,

1 = 0;47]71/2 5

Co=—4 X 107492,

‘3= —"TXx10"7y3 p=1/2

(20)
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Table I.

Assumed pipe parameters.

Resonancé frequencies ny = 1000 ﬁz = 2050
ng = 3100  rads-1
Damping coefficients i= 50 ka= 100
s k3= 150 g1

Coupling coefficients M=la=213=2, y=100
Jet velocity parameter . o =0.2 ‘

(19) - pressure producing the jet. This effect; is generally
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where y (called f in the earlier paper) is a parameter
measuring the sensitivity of the jet transverse
velocity to the acoustic particle velocity in the
pipe mouth. This treatment neglects many things,
such as the widening and slowing of the jet as it
issues from the slit, but we shall not enter into a
discussion of these here. Our only objective is to
obtain a qualitatively reasonable set of expansion
coefficients which vary in approximately the correct
way with blowing pressure.

The pipe is characterized for our present purposes
by the frequencies, heights and widths of its first - '
three resonances and we must also assign a value
to the interaction parameter y. The values adopted
for our illustrative calculation are as shown in
Table I. The quality factors (Q-values) ny/k; for

N

the three resonances are all close to 20, so that the
damping is not large. The resonances are purposely
shifted away from strict harmonic relationship by
amounts that are comparable with shifts found in
real organ pipes of moderately wide scale. The 4;
and y act essentially as scaling factors for th
interaction between the pipe and air jet and thei
absolute values, though important if a comparisor
with specific expenment is sought need not:
concern us here.

5. Pressure tranSient and initial conditions

The form of the attack transient depends upor
the characteristics of the pipe and the geometry o
the jet but, once these have been fixed, it depend:
primarily upon the time variation of the air

known to players of organs with mechanical actlon
and, of course, forms the basis of articulatio
(tonguing) for flute players but, rather surprisingly,
it has not been taken into account by those study
ing the onset transient in pipe speech [1 1], [12].

Wehave therefore pérformed a simple experimen
to measure the wind pressure in the foot of a flue
pipe seated on a simulated wind chest with &
mechanically activated pallet valve. When the
valve is opened abruptly the pressure in the pi
foot rises rapidly, in a time of order 10-2s, to a
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peak value and then decays, with a time constant

- of order 10-1s, towards a steady-state pressure.

The peak pressure is-typically several times greater
" than the steady pressure which itself is considerably
- less than the pressure in the wind chest. Slower

3 opening of the pallet reduces the magnitude of the’

pressure peak, while a very slow opening simply
. allows the pressure in the pipe foot to build slowly
© to its steady value. A detailed study of these effects
" is now being commenced but for our present
i purposes it is sufficient to note that, with abrupt
- pallet action, the pipe produced a_typical “chiff”
- while this was absent for the case of slow pressure
“increase. '

.~ These forms of pressure transient can all be
- described to sufficient accuracy for our present
. purposes by an expression of the form -

P (t) = po + (p1 — po) exp (—t/7) - (21)

. where p; specifies the pressure peak, po the steady
- pressure and -7 the decay time from the peak. We
~can thén distinguish three possibilities. When
P1>po the pressure peak is pronounced and we
‘may refer to the pressure transient as plosive, by
~analogy with the phonetic term. When p; = p, the
: steafciy state is immediately achieved and we call
Tl‘th'é-"'ﬁfééﬁiii‘e transient abrupt, while for p1 < po the
~ pressure onset.is slow.

The form (21) for p (¢) can be substituted directly

into eq. (20) and thence into eqs. (14) and (15) and .

the equations of the Appendix. The only other-data
. Tequired are the initial values.of the amplitudes a;
and ‘phases f;. For the simple form of eq. (21),
. these can be readily evaluated as follows.

The pressure transient. begins with a sudden rise
- of pressure in the pipe foot to a value p1. We make
the simplifying assumption that the jet forms

immediately and, after a small delay, interacts with .

the pipe lip at a time which we shall take as ¢ = 0.
It is during this part of the initiation of pipe
speech that the effects due, for example, to nicking
of the languid are most likely to produce an effect,
but we have agreed to ignore these here.

Now from eq. (20) we see that a pressure step p;
(millibars) in the pipe foot produces, for the
particular jet and pipe we have in mind, a pressure
step 30p1 (dyne cm~2) in the pipe. The large
decrease, considering the change of units, is caused
by the small ratio of jet cross section to pipe cross
section. Initially the pipe presents the specific
acoustic impedance gc=42 c.g.s. units character-
istic of an infinite pipe [13] so that the resultant
velocity step wave has amplitude 0.7 p;. The
various Fourier components comprising this step
are reflected from the open end of the pipe and
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again from the jet end, with a slight phase change
due to the impedance of the jet. The initial velocity
disturbance ‘thus looks like a square wave with
frequency close to 7; and we can make sufficient
allowance for anharmonicity of the resonances by
assigning frequencies n; rather than in; to the
upper partials. Thus

vy &~ (0.5 p1fi) sinng ¢ (22)

which gives for the initial amplitudes, phases and
frequencies ' '

a0 = 0.5 p1fin
pid = — mf2

Wi = N;.

(23)

Any minor error made in the frequency w; is

corrected very rapidly by eq. (14) so that the exact

choice of w; is not important. The main part of this
correction is due to the phase chénge produced by
interaction with the jet and, as we shall see from
the numerical examples, the initial frequencies
Wi+ /3z may differ considerably from the pipe
resonance frequencies ;.

In passing we should also note that, for a slow
pressure increase, it is still necessary to. commence
with & finite pressure step p1 in order to achievé a
unique solution. This happens, both in the theory
and in practice, since the static situation #;— 0 for
all 7 is a valid solution of the original set of egs. (1).
This solution will persist until upset by some
random transient, thus giving ..non-reproducible
behaviour. It is therefore necessary to provide a
reproducible transient to initiate pipe speech.

6. The attack transient

To compute the attack transient we have now
only to substitute the initial conditions (23) and the

pressure variation (21) into egs. (14), (15) and their

analogues in the Appendix, using the expressions
(20) for the ¢, and the numerical coefficients given
in Table I. The resulting equations are then easily
integrated numerically.

Hlustrative calculations have been performed for.

a wide variety of cases from which we have selected
the examples shown in Fig. 2 as being representative
of typical flue pipe behaviour. Computation time
was only 20s, on a medium-sized computer, for
each set of curves. The only modification made to
our previous discussion was to take «, the distur-
bance velocity parameter on the jet of eq. (18), to
have a value 0.2 rather than 0.4. This revised value
is in accord with indications from a study of flute

®
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Fig. 2 Tyjplcal calculated _pipe transients for the conditions detailed in Tables I and II. In each Flgure curves I, I
and HI refer to the first, second and third pipe modes respectively. Velocity amplitude v for each mode is gi
in centimetres per second and frequency f in radians per second. Broken lines indicate regions of unstable or uncer

tain frequency

(a), (b) and (c) show plosive, abrupt and slow attacks, respectively, to a steady pressure of 2 mb,
(d) is an abrupt attack to 5 mb,
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- jets [10] but the only effect in the present study is
- to ‘double the-effective cut-up distance, which is
- somewhat arbitrary in any case. The same results

“could have been achieved with « = 0.4 and =2 cm.,

The quantities calculated and presented here are
- the ‘velocity amplitudes of the various modes inside
. the pipe. The sound radiated from the open pipe
~end emphasizes the upper partials in proportion to
“their frequency [13], which should be borne in mind
“when comparing our calculations with the measure-
‘ments of Keeler and others [11], [12]. Thé actual
~sound pressure level measured at a distance of 1 m
from our pipe is calculated [13] to be 60 to 70 dB,
which js reasonable. This is, however, not significant
since the absolute level is determined by the ratio
Aly and the values of these parameters have been
simply assigned rather than derived.
Details of the pressure transients considered in
"the calculations are set out in Table IT. Fig. 2a, b
and ¢ show respectively plosive, abrupt and slow
attacks to a steady pressure of 2 mb. The plosive
attack gives a speech transient in which the second
pipe mode is dominant for the first 0.15s or so,
the three modes not being harmonically related
- during this time. After about 0.2 s the three modes
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(f) shows an unstable situation after abrupt attack to
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Table II. x

] ‘ Pressure transients..

Transient P1 Po.
_ mbar mbar 8
(a) plosive -~ 6.0 2.0 0.1
(b). abrupt 2.0 2.0 . —
(c) slow 0.5 2.0 0.1
" (d) abrupt 5.0 5.0 —
(e)- abrupt 10.0 10.0 —
(f) abrupt 8.0 8.0 —

become locked into harmonic relationship and build
steadily to their final amplitudes after about 0.3 s.
For an abrupt pressure attack the fundamental is
dominant throughout, harmonic relation between

" the modes is achieved after 0.15 s and the steady

state is reached in 0.2 s. For a slow attack the
speech is delayed, with the fundamental always
dominant, and the steady state does not occur until
about 0.35 s after the pressure is applied. ‘

Fig. 2d illustrates an abrupt attack to a final
pressure of 5 mb, showing that with such a higher
blowing pressure a speech transient with dominant
second mode can be produced without the necessity
for plosive attack. Such an attack does, however,
emphasize the second mode peak, while a slow
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attack eliminates it. At this higher blowing pressure
the steady state is also achieved in about 0.2 s.
When the steady blowing pressure is increased
> much above 6 mb, the pipe in our calculations over-
blows to its second mode to sound the octave.
Fig. 2e shows an abrupt attack to an overblown
state at a steady blowing pressure of 10 mb. The
second mode rises to its steady state after rather
less than 0.1 s, its frequency shifting a small amount
* during this time. The first and third modes-decay
rapidly with an oscillatory behaviour which can be
attributed to the term in (ws — we — w1)¢in eq. (15).
Finally, Fig. 2f shows an abrupt attack to a
marginally overblown condition at a steady pressure
of 8 mb. At this pressure the linear term in the jet
impedance has a negative real component for the
second and third pipe modes but a positive com-
ponent for the first mode. The interaction terms in
(03— w2 — w1)t are sufficiently large to cause all
modes eventually to build to comparable amplitudes
and to exhibit the unpleasant beating behaviour
remarked by Lough [18]. A slow attack is actually
able to eliminate the first and third modes in this

case but pipe speech ‘would, in practice, be regarded -

as unreliable.

A comparison of the curves of Fig. 2 with the
measurements of Keeler [12] shows  very good
qualitative agreement. Keeler’s transients typically
extend over 20 to 40 periods of the pipe funda-
mental which, for our 160 Hz pipe (n; = 1000 rad s~1)
implies 0.1 t6 0.3 s in agreement with our calcula-
tions. Lack of knowledge of the pressure transient
in the pipe foot for Keeler’s measurements precludes
any closer comparison.

- Our, calculations also give further insight into

- the nature of the chiff in pipes with ploswe or aprupt
attack. The- dominance of the second pipe mode is
one 1mp0rtant feature Whlle another perhaps

* equally important, is the lack of harmonic relation-
ship and the rapid shifts of phase and frequency in
all the pipe modes during the transient.
. We ‘have, perforce; neglected the effects of miost
vommg adjustments on the initial transient, simply
assuming the pipe to have normal speech. There is,

'however one.ebservation which can be made. The -

'tlme ‘interval before the pipe achieves its steady
state depends not only on the form of the pressure
transient, but also on the initial values of the mode

Appendix
(lz/zaza}z {clazcozsm(cogég—l—dz)—}— 02a1 w1 sm[(w2~2w1)t+2w161+
—I—ﬁz—2ﬁ1—|—A1]+02a1a3w1wssm[(wz+wl—w3)t~w151+w353—{-ﬂg—l—
+f1— s — A1+ As] + §csa1a2a3 01 w3 wssin[(2ws — w1 — ws)t — ws 8 -
ﬁs—Az+Al+As]+403(az3wz +2azal wg w12 +
+ 2a3 as® s w3?) sin (wg 05 + As)} + (122 — wa2)/2ws

:j<1§2> =

+w161+w353+252—ﬁ1

N. H.FLETCHER: TRANSIENTS OF ORGAN FLUE PIPES

ACUSTICA
Vol. 34 (1976)

amplitudes, and particularly that of the fundamen- -
tal. A moderately large initial amplitude hastens
steady speech, while a very small initial amplitude
delays it. This initial amplitude is, by eq. (23),
proportional to the initial pressure pi, but it is
also proportional to the fraction of the undisturbed
jet (assumed to be half in our calculation) which
enters the pipe mouth. If the jet is adjusted to pass
largely outside the pipe lip then we expect the
speech to be slow. This is in general accord: with
experience.

7. Conclusions

The qualitative success of the theory developed:
above in describing the onset transient of organ
flue pipes suggests that the theory is basically
correct and that no vital mechanisms have been
overlooked in its formulation. There aré, of course;
subtleties to be considered but these can safely
be left to a later stage in the development. '

The theory is based upon a greatly simplifie
model for the air jet and its interaction with th
acoustical currents in the pipe and it is evident tha
this model requires a great deal of refinement before
we can attempt a reahstic -comparison betweer
theory and experiment for a blown pipe: Theoretica;
and experimental work to this end is now under wa;
in these laboratories.

In. advance of this proper understanding of th
jet mechanisin, however, the theory has made clee
the important role played by the pressure transien
in determining pipe speech. This must be také
carefully into account in any further experlmenta
studies.

Elaboration of the theory to treat a pipe wi
four or more significant resonances or to inclu
higher terms in the non-linear jet characteristic
simply: a matter of tedious algebra which, wh
completed, will not significantly oomphca,te the
calculations or extend the small amount of compu
time necessary for the integration. Any such
development -is left in abeyance until the mo
significant study of the jet characteristic has been
completed.

This work is- part of-a project des1gned
investigate the acoustics of traditional musica
instruments which is supported by the Australian
Research Grants Committee:
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{az) = — tkaas + (A2/2w2) {...cos ...},
By = —
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(As/2a3 w3) {c1 03 w3 sin (w3 ds + Ag)y + ca @1 as w1 w2 sin [(wg — w1 — w2)t + 61 w1 +

+ 62 w2 + B3 — f1— P2 + A1 + A2] + £ csa9? ar we? w1 sin [(w3 — 2wz + w1)t +
—{-2w262—w161+,83—2,32+;31—{—2A2—A1]+103(a33w33+2a3a12a)3w12—|—
+ 2az ag? wswzz)sm(w353+ds}+ ng2 — w3?)/2ws ,

<a3> ‘—v — %ksas -+ ~ﬁ3/2a)3 { :OS }

(Received April 8%, 1975.)
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