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nearest-neighbour angular correlations

N. H. FLETCHER{}
H. H. Wills Physics Laboratory, University of Bristol
MS. recetved 5th December 1966, in revised form 20th March 1967

Abstract. The electronic energy bands of a two-dimensional liquid in which there
are angular correlations between the positions of nearest-neighbour atoms are in-
vestigated, usirig an extension of the Greenian formalism of Phariseau and Ziman and
a generalized coherent-wave approximation. Near k = 0, and when the number of
nearest neighbours is odd, it is found that, in addition to the normal bands in which
the wave function has the same sign on each atom, bands occur in which the wave
function is essentially of opposite sign on nearest-neighbour atoms. The energy bands
in such liquids therefore closely resemble those in the corresponding crystal having
two atoms per unit cell. In particular, different band edges can be identified with
wave functions possessing bonding or antibonding properties.

As the degree of angular correlation is decreased, the imaginary part of the wave
vector or energy in these new bands increases and the bands ultimately disappear as
the nearest-neighbour environment approaches spherical symmetry. The energy
states associated with these bands presumably become added to the symmetric-sign ..
bands as states of large wave vector. '

The extension of these findings to three dimensions is conjectured and the results
are applied briefly to a discussion of the energy band structure of amorphous ger-
manium, which is a semicopductor, and of liquid germanium, which is a metal.

1. Introduction

In the usual discussions of the electronic structure of solids the existence of energy
bands and band gaps is closely related to the existence of long-range atomic order. It may
therefore be expected that the magnitude, or even the existence, of these band gaps will -
be greatly affected by a transition to the liquid state in which all long-range order is lost.

For materials which are metals in the solid state the effect of such changes upon their
electrical properties may not be large, because the Fermi surface is not very close to a
band edge over much of its area. In the case of semiconductors, however, the effect of
melting can be very great. Thus crystalline germanium, for example, is a semiconductor
with an energy gap of 0-7 ev while liquid germanium is a metal. o

Not all semiconductors behave in this way. Some remain semiconducting in the liquid
state. In addition, it is possible to prepare specimens of some materials in an amorphous |
solid state in which they also behave as semiconductors. Germanium is particularly -
interesting in this connection since it can exist in an amorphous semiconducting state as.
well as in the crystalline and metallic liquid states mentioned above. ’

The optical properties of amorphous germanium, prepared by vacuum evaporation onto .
a cold substrate, have been extensively studied by Tauc et al. (1966) who concluded that -
its band structure near k = 0 is very similar to that of crystalline germanium. On the".
other hand, x-ray diffraction data (Richter and Breitling 1958) suggest that, whilst each
atom is surrounded approximately tetrahedrally by four others, neighbouring tetrahedra
are free to rotate about their common bond so that quasi-crystalline order does not extend
much past nearest neighbours. Liquid germanium, while still retaining an average co- .
ordination number of 4 to 5, does not appear to have so much nearest-neighbour angu:
ordering. )

These observations lead to the assumption that, in germanium at any rate, the existenc
of the band gap, and hence of semiconducting properties, is determined largely by the short
range, rather than the long-range, order. The existence of similar bonding structures X
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materials like selenium which remain semiconducting in the amorphous state suggest that
this principle may be of rather general applicability.

Theories of the electrical properties of amorphous materials based on this principle
have been developed by workers of the Russian school (Gubanov 1965, Moorjani and
Feldman 1964) who treat the amorphous solid as derived from a distorted crystal lattice.
This procedure, however, imposes wave functions on the system to some extent and it is
not obvious that all relevant amorphous structures can be obtained in a convergent way
by this means.

It is therefore desirable to show that the bonding and antibonding wave functions which
are characteristic of a semiconducting crystal can be obtained in a consistent way from the
sort of formalism generally used in the treatment of liquid metals. To do this we shall
require to generalize this formalism to take account of angular correlations between nearest-
neighbour atoms, since this appears to be at the core of the distinction bétween semicon-
ducting and metallic states.

Since angular correlations have no meaning in one dimension and since the three-
dimensional case is rather complicated, we shall present the development in terms of a
two-dimensional system. In this way the fundamental ideas are not obscured by algebraic
complexity, while the essential features of the physical situation still emerge.

2. Integral equation formulation

The treatment we shall use is based on that developed for crystalline solids by Korringa
(1947), by Kohn and Rostoker (1954) and later by Segall (1957) and by Ham and Segall
(1961). It was applied in modified form to simple liquids' by Phariseau and Ziman (1963)
and a recent more general discussion has been given by Ziman (1966). This method has
the prime advantage that the formalism is closely related to the physics involved—the
scattering of an electron wave from an array of spherical obstacles—so that the implicit
assumptions made are readily apparent. There is also a close formal connection between
this approach and the more familiar augmented plane-wave method (Morgan 1966).

We seek solutions of the Schrédinger equation which, in appropriate units, may be

written
{= V2+V(O)(r) = %(x) (1)

where V(r) is a self-consistent potential for the complete array of atoms and « is related
to the energy E by «2 = E.
This equation is equivalent to the integral equation

(x) = [ Go(r—x )W yh(e') de )
where &, is the free-space propagator or Green function, which satisfies
{(V2+ B Gy(x—1') = 8(r—r') ()

and which has, in two dimensions, the explicit form
Gole—x') = — ZHH(cfr—r]) 4)

where H,®(2) is the Hankel function of the first kind and of order zero, defined by
Ho®(2) = Jo(2)+Ng(2). ®)

"To make further progress it is necessary to assume that, by appropriate choice of energy
zero, V(r) can be adequately approximated by a ‘muffin-tin potential” which has circular
symmetry within a set of non-overlapping circles of radius 7 centred upon the atomic
positions x; and is zero elsewhere. Choosing new coordinates p relative to the positions

of the atomic centres such that
r=Xx;+p (6)

$x) = dile);  V(x) = o(p) ()

and writing
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within the atomic circle centred upon x;, (2) becomes
$i(e) = 3 [ Fole—e’+%,—x,)0(o W (0") dp". 8)
i

3. Coherent-wave approximation .
In the case of a crystalline solid, (8) can be immediately simplified by using the Bloch

theorem to write
: i(e) = exp(ek . x;)o(p) ’ (9)

where ¢iy(p) is the wave function in the cell at the origin. Because of the ‘muffin-tin’ nature
of v(p); (8) cani then be reduced to an integration over a single atomic circle together with a
summation which can be expressed as

Glp, 0") = 2, Fo(p—p' —x,) exp(ik . x,). (10) |

G(p, ¢') has been called the Greenian of the system. ‘
If the crystal has more than one atom per unit cell, then (9) is generalized to

@ = exp(k . X} ® (11)

where the index 7 runs over the atoms of the cell.

The basic assumption of the Phariseau—Ziman method is that one can introduce a
coherent-wave approximation of the same form as the Bloch relation (9) to relate the
ensemble average wave function on one atom to that on another. The exact nature of the
physical and mathematical approximations involved in this assumption has not yet been
fully investigated, though Ziman (1966) has discussed some of the formal assumptions
implied, and the relation of the solution to that given by an expansion of the Green function
has been considered by Ballentine and Heine (1964). We shall adopt a generalized form of
this coherent-wave approximation, in a sense to be discussed below, in the present develop-
ment, with the general interpretation that the coherent wave is only part of the total wave
function and that the propagation vector k, which is now complex, represents a propagating -
wave which is attenuated by scattering.

We are interested in a situation in which the two-dimensional liquid has a short-
range order in the sense that each atom tends to have Z nearest neighbours arranged
symmetrically about it. These Z atoms will not generally be all at exactly the same distance,
nor will their angular arrangement be perfect. Nevertheless, provided the deviations are
not too great, it will be possible to define an angular orientation o of the nearest-neighbour
environment relative to some standard orientation, as illustrated in figure 1. As the devia-
tions become greater, this will involve making a least-squares best fit and ultimately, for
complete disorder, it may no longer be possible. We shall see later that this failure for large
disorder is an integral part of the theory. )

Now, instead of performing a complete ensemble average over all atoms of the liquid,
we recognize that the index « should be preserved by analogy with the index i in (11):
Since « is a continuous variable, we take a small range of orientations d« and perform an
ensemble average over all atoms belonging to this set. The ensemble average so defined has
a definite nearest-neighbour orientation and those neighbours have angular positions
defined by the bonds of the orientation, except that each bond angle has a Gaussian dis-
tribution of half-width § about its mean value. This situation is illustrated in figure 1.
The distribution of more distant atoms is essentially circularly symmetric though we coul
easily include angular correlations of more distant neighbours if we wished. The radial
distribution of nearest neighbours is specified by a radial function g4(7) and that.of mor¢
distant atoms by gu(r), where these quantities are defined so that the number of atoms
lying between circles of radii 7 and 7+ dr is Ng,(r) dr. N is the average number density ©
atoms in the liquid and the total radial distribution function is

8(r) = g1(r) +£a(r)-
After this partial ensemble average has been taken, the atoms of the liquid all have identical

2
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Figure 1. Two different atoms in a liquid with co-ordination number Z = 3 having

the same orientation «, as indicated by the triangle, but differing in bond angle dis-

placements y and in nearest-neighbour distances. The third figure shows contours of
the ensemble average environment for this orientation «.

environments in terms of the radial functions &i(r) and differ from each other only through
the orientation « of their angular environments.

As an appropriate generalization of the crystalline relation (11) we now assume a
generalized coherent-wave approximation of the form

¥ = exp(ik . X,)(a’ — aiho” (13)

where « is the orientation of the environment of the atom at the origin and the operator
(o' — ) is as yet undetermined.

To determine the form of %(a) we note that it is, in general, a function of k and may
depend on other quantum numbers as well, so that it may not produce the same effect on
all states of the same k. However, if Z is the number of nearest neighbours, we must have

RA(2sm|Z) = 1, s=0,1,2, ... (14)
and also? for this two-dimensional case,
E()R(B) = R(B)R(x) = R(a+P). (15)

To evaluate Z(x) more specifically we note that, if the wave functions i on the atoms -
of our problem are expanded in terms of a set of orthonormal functions u,, then %(c)
is an operator in the space of the u,, and, from (14), an appropriate expansion is given by

the matrix elements
e (D exp(inZex) (16)

with » = 0,1, 2, .... Since all rotations in two dimensions commute, as in (15), it is
possible to select the set u,, so as to simultaneously diagonalize all the R omms 80 that we have
the expansion

Ry (%) = 2 @pmB e €xXp(inZcr). (17)
. ~ :

The matrix coefficients «,,, are, in general, functions of k.
This expansion is general enough to describe all possible properties of %(«) in the two-
dimensional case.t It also represents a possible, though unnecessarily complicated,

T In an earlier publication (Fletcher 1967)-and using a more restricted physical model it was
assumed that, very near k = 0, %(«) can be represented to a first approximation by a simple rotation
through «. While this assumption leads to no inconsistencies for the model considered, the present
development is more general and supersedes that given in this reference.




728 N.FH. Fletcher

starting point for the treatment by the Kohn-Rostoker method of a crystal with severa]
identical atoms per unit cell. .

4. Greenian formalism

If we substitute the generalized coherent-wave approximation (13) into the integra]’
equation (8), take x; = 0 and then replace j by j, we obtain .

- FD"e) = [ 3 Fole—e'—x,) expl(ik . X))o W) do' (1)

where ,%(p) is the wave function in a circular cell of standard orientation & — 0, o is the
orientation of the cell at the origin, and the integration now extends over only a single
cell. Sk

The Greenian operator for the system now has the form

G¥(p ) = {3, Folo—p"~x,) exp(ik . x)%(a) ... > (19

where the wave function and potential on which G® operates are the subject of this operation
before the configurational average, indicated by ( >, is taken. This average does not include
an average over the orientation of the cell at the origin, so G still depends upon « formally
in the same way as it would depend upon the index 7 of equation (11) in a crystal with more
than one atom per cell. The ensemble average over directions in the liquid essentially
rotates the reference orientation « = 0 along with. the cell orientations ;. 'The most: -
appropriate procedure is therefore to average over directions of the propagation vector k
in (19) and this may be taken to be implied in ¢ >. This Greenian contains all structural
information about the system, while information about the atomic potentials is separated
into 9(p) and the behaviour of (p) within an atomic circle.

On the basis of our discussion above we can now decompose G* into three terms,
representing the atom at the origin, its nearest neighbours and further atoms respectively,
as follows:

G*(p p') = Folp — ) %(x) + G1%(p, ')+ G2*(p, ") (20)
where '
N . .
G(e,0) = (G 3 [ Fule—e—x) expli x)gu(e) dfite) . » @)
g 1 :

and )

Go%(p, 0') = <i\7_ﬂ f f Go(p—p' —x) exp(ik : X)gy(x) dx dQ(x)H(x) >2 (Z_Z)if

'The ensemble averages in (21) and (22) are those appropriate to the orientations of nearest
neighbours and non-nearest neighbours respectively, and over all directions of k. :

5. Variational procedure

The method of Kohn and Rostoker now proceeds by establishing that the integr
equation (2) is equivalent to the variational principle

SA=0 (23
where A is the functional :

A= [ VW) de— [ [0V Gole— ) V(e W(x') dr dr’ (24

and all variations & are allowed, including those which do not satisfy the boundary com:
ditions. .
Since, under the assumption of a muffin-tin potential, the Hamiltonian for an mdlvu_iu_a',
atomic cell commutes with the operators Z(a), it is possible to select a set of basis function
which simultaneously diagonalize the Hamiltonian and the operators Z(x). There 15 ¢
ambiguity about the choice of these basis functions and the appropriate expansion 0

Q.
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wave function ¥(p) within one of the circularly symmetrical potential regions is
$(P) = 2, buRun(p) exp(ime) (25)
m

" where the b, are constants and the R,,(p) are solutions of the radial Schrédinger equation.
From the explicit form (17) for Z%(«) we can now evaluate the effect of its operation
‘on#(p)- Because of the 8, in (17), the coefficients a,,, and b, always occur in the corn-
bination @,nb,, and we can replace this by a single symbol

Bum = @nmbm.- . (26)

These coefficients B,,, are the quantities which are to be varied in (23).
© We could proceed from (23) but an identical equation is arrived at (Kohn and Rostoker
.. 1954, Ziman 1966) if we apply instead the condition

0 7
[[ete erforten} (o e, enfiten]  aned @)
: op dp o=rs—¢
" where G%(p, @’) is the Greenian operator given by (20), 7, is the radius of the atomic circles,
¢ is an infinitesimal positive quantity and p < p". It turns out, as we shall see later, that
(27) provides a set of only M equations, where M is the number of m values included in the
expansion (25), while there are M x N independent coefficients 8,,,, where IV is the number
* of n values included in (16). We can, however, derive just the required number of indepen-
dent equations from (27) by considering this equation for N different values of the orienta-
tion o. This procedure, as we shall show later, is quite unique.
From here we follow closely the two-dimensional analogue of the development of Kohn
and Rostoker or of Phariseau and Ziman and for that reason we sketch it in outline only.
The free-space propagator given by (4) can be expanded (Watson 1944) as

Golo-p) =~ 3 Il explimble expl=imde)}  (9)

m= —

for p < p’. Since the G;* of (20) are non-singular, we can find for them similar expansions
of the form

Goloe) = =5 3 FnTulepllir) xplimb@) xpl~im b6} (29
where the %#,,,,% have now to be determined. To do this we use the two-dimensional
plane-wave expansion
exp(ik . 1) = 5 i), (kr) exp{im(x)} exp{ — imp(k)} (30
from which we derive "
Jn(xR) exp{im$p(R)} = g T (1p)T s — m(rcp") exp{im'd(p)} exp{i(m—m")d(p")}  (31)

where )
R=p—¢p' (32)

This gives .
Z .
Golp—p'—x) = — ¢ 2 Hy®(ax) exp{ —im(x)}
mm’

X T (160)T e — m(p") €xp{im $(p)} expli(m’ —m)d(p");  (33)
which leads finally to

1 o
B ™ = 7 Ao mem® z exp{i(m’ — m)p(x;)} () 1 (34)
B ™ = Ao 0P LR(0) D50 ma (35)

where the ensemble averages are over the orientations of nearest neighbours or of more
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distant atoms respectively and

A0 = N f T () HL D (x)gi () d. 36)
0 .

We can further simplify (34) by noting that for Z symmetrically disposed nearest neigh-
bours, which is what is implied by the ensemble average ¢(x;), -

$(x)) = ¢o+2mj|Z,  j=1,2,3,..,Z (37)
where ¢ is a constant. Thus, unless [m'—m| = nZ with n = 1, 2, - (34) becomes
B ™ = Ay P $Z(@) 318 mom - (38)

In the cases we shall be considering; Z > 3 while , m’ will be 0 or 1 so that (38) will
always be valid, though this will no longer be the case if higher momenta  are included.

When we substitute the Greenian operator G(p, p’) as defined by (20), (28), (29), (35)
and (38), into (27), we are led to consider the effects of the operators <%(a)>1 and (%()>,.
upon the angular parts of the wave function (") defined by (25) and (26). Two distinct
cases arise, depending upon whether the co-ordination number Z is even or odd.

5.1. Odd co-ordination number

Let us consider the case when Z is odd and suppose that the regular Z-fold symmetry
of a given atom is distorted in such a way that any bond may vary from its symmetrical
position by an angle y as shown in figure 1. 5 is. distributed in some manner such as
(1/84/7) exp(—y2[48%), where § specifies the half-width of the distribution.

Now for nearest neighbours the difference in average orientation, «— oo, 1s necessarily
7[Z but this can vary slightly because of the distortions y. Noting the decomposition of
Z () given by (17), we see that for nearest neighbours

(exp(inZ;x) >1 exp(ime) = % O_Om exp[z’m{qﬁ + nZ(oco + —Zz +y )” exp ( - 4}:; ) dy
= exp{im(¢ +nZoy+nm)} exp{ — (mnZ38)%} (39)

where, in the interests of simplicity, the extension of the range of integration to + oo has
not been taken too seriously.

It is clear that the effect of this component of the nearest-neighbour ensemble average
operator {Z(«)}>, has been to perform a generalized rotation upon the angular coordinate ¢

and at the same time to multiply the wave function by an exponential factor less than unity.

So sharp is the variation of this factor that, for § greater than about #/2Z, only terms with

m =0, +1andz = 0, 1 remain in 4. This may be taken to apply to the sort of liquid we 2

are considering, since Z is at least 3 and 7/6 does not represent an unduly large distortion. -
It1s, of course, possible to carry through further terms but this complicates the algebra and
is not necessary for our present discussion. )
Turning to non-nearest-neighbour atoms, we have assumed these to have no correlation
in orientation with the central atom. This is in agreement with our treatment of nearest
neighbours since, on this basis, the orientational uncertainty of next-nearest neighbours
amounts to + 26 which is greater than «/Z. Thus, from a treatment similar to (39), we find

exp(inZa) Yo exp(imd) = exp(im)S,,. . (40)

Substituting all these relations back into (27) and collecting up from it the terms in
Tn(kp) exp{imep(p)}, which are linearly independent of the other terms involved, and intro-

ducing the abbreviated notation

d d
[ ] = {Ta() = Rp') = Ronlp)
p dp

Ay = exp(— Z26%) ' (42)"
B ym ™ = Bpp® (o), (43) :

Jm(Kp')} (41) :;

p=rs—€
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" we find
S ((Hn®, R l{Bo +Brs €xp(iZ0)}8
.om’

ar

+ By P Ty Re] [/Bmfo+ﬁm»1 exp{iZ (oc+ Z)}Az] + B @[T s Ry 1Bmo) = 0. (44)

This represents a set of independent equations for different values of .

- As remarked before, we can increase the number of independent equations by taking

. several different values of «. In the present case only two such equations are needed and,
since two arbitrary values of « suffice, we choose « = 0, #/Z. It is easily verified that the

- final result is independent of this particular choice. .

If we define A [ @ /
= [H,"*, R,1/[Tn, R 45
then the equations are " " it ] (*3)
(ﬁm’o + Bm’l)AmSmm' + Bmm’(l)(ﬁm’o + Bm’lA Z) + Bmm’(z)ﬁm’o =0 (46)
and, after a little manipulation, the determinantal condition for their compatibility becomes
P 0 ~0 )
0 —Bmm;(l)Az"‘AmSmm' .

We have used here a semi-condensed notation for the determinant in which, with each row
or column labelled by a pair of indices 7, 7, we have written rows and columns explicitly
for n and indicated the multiplicity of rows and columns for different m, m’ values by
subscripts. Thus (47) represents a 2M x 2M determinant. The determinant is diagonal
in # in the present case when only n = 0, 1 are allowed, but this is not true in general.
If we restrict attention to angular momenta m, m’ of 0 or +1, then from (35) and (38) the
determinant is also purely diagonal in m, 7’ in the present approximation.

5.2. Even co-ordination number

When Z is even the treatment is formally very similar to-that above except that the
average orientation of nearest neighbours is the same, rather than differing by #/Z. The
expression corresponding to (44) thus differs from (44) by omission of #/Z from the
exponent in the second term and, instead of (47), we finally arrive at

d t Bmm’(1)+Bmm’(2)+Am8mm’ 0 O 4'8
€ 0 B A+ A5, | (48)

which differs formally from (47) just by the sign of one term. The explicit form of the
various terms is, of course, different in the two cases. :

6. Discussion

We have derived, in the form of (47) or (48), a determinantal equation in k and «
involving the radial structure of the liquid through the terms B,,,,*, the angular correlations
of nearest neighbours through A, and the scattering behaviour of the individual atoms
through the quantities A,,. Solution of this equation, as in the Kohn—Rostoker or Phariseau—
Ziman treatments of crystals or liquids respectively, gives a relation between k'and «. It is .
important now to see how our equations are related to both those for a crystal and those for
a simple liquid and are, in a sense, intermediate between these two extremes.

First, let us consider the case in which angular correlations between nearest neighbours
disappear. This occurs when the uncertainty 8 in the bond orientations exceeds about
w|Z so that A, — 0. Itis clear in this case that it becomes impossible to define an orienta-
tion for the nearest-neighbour environment and the ensemble average gives spherical
symmetry, as assumed in the Phariseau—Ziman treatment of simple liquids. Analytically
we see that both (47) and (48) reduce essentially to ‘

det| B ® + Brm®@ 4+ A8 | = 0 (49)
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which is the Phariseau—Ziman equation in two dimensions. The remaining rows and
columns in the complete determinant are just A,,S,,,,» which, being diagonal and indepen-
dent of k, contribute nothing to the solution.

Let us consider now the case of a crystal with two like atoms per primitive cell, this
implying an odd value of Z in the two-dimensional case. This problem has been treated in -
three dimensions by Segall (1957) and the two-dimensional equations will be similar in
form. Using notation analogous to that in our discussion above, the crystalline secular.

equation becomes 3 :
) det]| By + A8 5] = 0 (50)

where the indices j and j* refer to the two sublattices on which the atoms lie and the elements
of the determinant have the four indices m, m/, j, j’. Writing rows and columns for the
J»J" indices explicitly and performing a few obvious manipulations, (50) becomes

B + 3B + B P 4 A (B — B9
3B — B, .0'9) B9 =3B 97+ By P) - A o
where the writing has been simplified by noting that

Bmm'(ﬁ) = Bmm’(j ),

=0
(51)

det

From the explicit forms given by Segall it also follows that, at k = 0 and for m = m’,
B9 = B, D,

Thus, if only one value of m is considered, and at the zone centre only, (51) has a form
similar to that of (47) and factors into two simple equations

B, 9P+ B, 0+ A, =0 (52)
and B9 = B9+ A, = 0. (53)

The first of these equations, (52), is analogous to the upper equation derived from GO
when only a single m value is considered. It determines a band edge at k = 0 for which
the wave function has the same sign on the atoms of each sublattice and therefore con-
stitutes bonding orbitals if m is even and antibonding orbitals if 7 is odd. _'This same
character persists in a non-rigorous way over the whole band (Leman and Friedel 1962).
Equation (53) corresponds to a band edge atk = 0 for which the wave function has opposite
sign on the two sublattices and so has antibonding character when m is even and por}d{ng
character when m is odd. In the liquid case in (47), since the two sublattices are indistin-
guishable past the nearest-neighbour shell, the term corresponding to B,,, " vanishes and
only the nearest-neighbour contribution —B,,, A, corresponding to the leading term
of —B,,,%7" remains.

It is thus clear that the energy bands of the liquid, derived from (47), have a one-to-one
correspondence with those for the corresponding crystal with two atoms per unit cell and
exhibit the same bonding or antibonding character in their wave functions. From the .
similarity of the coefficients involved in the liquid and crystalline cases we should expect
that, near k = 0, the energies determined in the two cases will also be very similar, provide
the angular correlation is strong so that A ; is not much less than unity. ) ‘

An interesting and important phenomenon occurs as the angular correlation betwee(ril »
nearest neighbours is relaxed. Let us consider the liquid analogue of (53), giving a ban
whose wave functions are alternating in sign at k = 0. From (47) this is

—Bmm’(l)AZ'i'AmSmm’ =0
which, from (43), (38) and (36), has the explicit form

me Jo(Rx)H P (k) g1 () dx =.Am/AZ.

(54

(55)

Here A,, is a complex constant. To solve (55) we may take eithe_r one of k or « to be rzal
and fixed in value and then solve for the other, which will necessarily be complex in generd’
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though the imaginary part may be small. As the angular correlation of nearest neighbours
is redyced, however, A, tends to zero and the right side of (55) to infinity. From the
behaviour of J(z) and H,®)(z) for complex % (Jahnke and Emde 1945) this implies that the
imaginary part of either k or x must also tend to infinity. The band of allowed energy levels
associated with this solution therefore disappears. On the other hand, this loss of angular
correlation has, in this approximation, no effect upon the band derived from wave functions
of the symmetrical-sign type and given by the analogue of (52).

The case of a liquid with even co-ordination number Z corresponds to a crystalline solid
with just one atom per primitive cell. In this case both the solutions provided by (48)
correspond to (k, «) relations for wave functions which, at k = 0, are of the same sign on
all the atoms of the system. Because the two equations derived from (48) are very similar,
rather than differing in an important sign as in (47), they should lead to energy bands which
overlap. This then provides only a small correction to the density of states derived from the
Phariseau—Ziman equation, rather than giving rise to qualitatively new bands. Again the
new states will disappear as the angular correlation is reduced.

This disappearance of whole bands may seem impossible from the viewpoint of the
crystalline case, but it must be remembered that a liquid has no Brillouin zone structure in
any strict sense, even if one can define a region in k space which corresponds in volume to
a Brillouin zone and contains two states per atom (counting spin). If this is the case, then,
as the angular correlation is reduced, this region of k space grows from that appropriate
to two atoms per unit cell to that appropriate to one. In some sense therefore we may
expect the states lost from the disappearing bands to be added as states of large k to their
partner band with the same m value.

It is, perhaps, appropriate to remark that, in the absence of a Brillouin zone structure,
and particularly with complex values of k or «, the density of states in energy cannot be
simply evaluated from the «(k) surfaces by assuming a uniform density of states in k space.
This is obvious from consideration of a single localized eigenstate, for example a wave
function on an isolated atom, and noting that, because of its localization, the extent of the
wave function in k space is large. Some of these problems have been considered by Lloyd
(1967) who has developed techniques for evaluating the density of states in certain cases

7. Extension to three dimensions

The type of angular correlation dealt with here for an artificial two-dimensional case
also exists in three dimensions and it is to be expected that a similar treatment can be
applied, though the analysis is necessarily much more complex.

Each atom in the liquid has an environment which approximates a certain point group
symmetry and which has an orientation defined by Euler angles (o, §8,7). We seek a
generalized rotation operator # which will leave the wave function invariant under the
operations of the point group (or possibly under a wider set of operations, because the
rotational symmetry of the problem about the direction of k as axis may make a modified
configurational averaging desirable) and which will, at the same time, adequately describe
the possible modifications of the wave function under rotation. The most appropriate
expansion of % will probably be similar to (16) except that functions of angular momentum
operators must be used instead of simple exponentials to describe rotations in three dimen-
sions (Messiah 1962). It is from the non-commutativity of these operators that the analy-
tical complications spring.

Whilst it is hoped to present a proper treatment of the three-dimensional case at a
later stage, it is now possible, with reasonable confidence, to conjecture as follows.

The three-dimensional case of interest is that in which the point group of nearest
neighbours in the liquid does not contain the inversion as an element. Nearest-neighbour
atoms are then connected by a rotation which is not a symmetry operation of the point group,
in the same way as are the atoms of a crystal with more than one atom per primitive cell.
In this case, provided the co-ordination number is small and the angular correlation high,
the liquid will exhibit bands corresponding to wave functions with bonding or antibonding
symmetry at k = 0 in the same way as does the corresponding crystal, and the energies of
these bands near k = 0 will be similar to those of the crystal. As the angular correlations
are reduced so the bands corresponding to wave functions which are of opposite sign on
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neighbouring atoms disappear, the states in these bands being added to the symmetric
bands at large wave number.

8. Application to germanium

The band structure of crystalline germanium is now well known (for a review see
Callaway 1964). The valence band and lower parts of the conduction band arise from
atomic s and p orbitals which, on a tight-binding approximation, are hybridized to tetra-
hedrally directed sp? orbitals. ‘

At k = 0 the bottom of the valence band has symmetry I'; and is formed essentially
from a symmetric (bonding) combination of atomic s orbitals. The top of the valence band,
'y, is.an alternating-sign (bonding) combination of p orbitals and, in this approximation,
is triply degenerate. The conduction band minimum at k = 0 is I',,, an alternating-sign
(antibonding) combination of s orbitals and T';; (a symmetric-sign antibonding combina-
tion of p orbitals) lies rather higher, though this branch actually forms the band edge at the
zone-boundary point L. Spin-orbit coupling splits the degeneracy of I'ys. and I';5 at
k = 0. This is shown in figure 2(a).

L

3
>

k=0 k=0

1
1]
+
-4
Il
L]

+p

| fioal ,
(a) (5) (e)

Figure 2. (a) Band structure of crystalline germanium. States at I, the zone centre,

are labelled neglecting spin—orbit coupling. (5) Band structure suggested by the theory

for amorphous germanium near k = 0. + states are the same on each atomic site

while — states differ in sign on nearest neighbours. (¢) Band structure suggested by

the theory for liquid germanium near k = 0. The ‘allowed region’ in k space is twice
as large in (¢) as in (b).

In amorphous germanium the tetrahedral co-ordination is thought to be maintained.
The tetrahedral point group does not contain the inversion and Z = 4 is the smallest
possible co-ordination number. We therefore expect, on the basis of our two-dimensional
treatment, that amorphous germanium should have a band structure similar to that of
crystalline germanium. The spin—orbit coupling, being also large in the isolated atom,
should split the T'y5. and T';5 states as before. This situation is shown schematically in
figure 2(5). ‘

¢ Liqéic)l germanium, if only because of its high temperature, will have much weaker
angular correlation than amorphous germanium, though the co-ordination number is still
only about 5. If we assume the angular correlation to have broken down so that A, — 0,
then the bands represented in the crystal at k = 0 by I'ys, and I';. will have disappeared
and become absorbed in I';5 and T'; respectively. The two bands which have disappeared
are those critically responsible for semiconductivity. The liquid now simply has an s
band; which will be filled, followed at a higher energy by a p band which will be partly
filled, as is shown schematically in figure 2(c). Itis thus little surprise that liquid germanium
behaves as a metal.
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9, Conclusion

The most important conclusions to be drawn from this work are not those relating to
amorphous germanium, which are somewhat speculative and are based upon a particular
model for its possible structure, but rather those general assertions which can now be
made about the relation between short-range order, and angular correlations in particular,
and the band structure of a liquid or amorphous solid. These have only been explicitly
demonstrated in two dimensions but there does not appear to be any reason why they cannot
be extended in essentially the same form to the three-dimensional case.

The prime assertion is that the existence of a high degree of angular correlation between
nearest-neighbour atomic positions is sufficient for the existence of band edges with wave
functions of bonding and antibonding character at k = 0, provided that the point group-of
the average nearest-neighbour environment does not contain the inversion as an element.
This is true irrespective of the fact that it is impossible to define two independent sublattices
in the liquid as can be done in the corresponding crystal. We are therefore led to the
conclusion that many of the gross features of the band structure of a material are determined
by its short-range order, irrespective of the existence of long-range order. This would
indeed be expected on a ‘chemical-bond’ picture of the electronic structure, but has now
been demonstrated using an approach which can include an adequate treatment of metallic
structures.

At k = 0 those band edges which correspond to wave functions of essentially opposite
sign on nearest neighbours depend rather critically upon the degree of angular correlation
between nearest neighbours. As this correlation is relaxed, the propagation vector acquires
an increasingly large imaginary part, corresponding to increased scattering of the coherent
wave, and the band gradually disappears. Those states which would have been assigned to it
are transferred, as states of large k, to a related band.

The generalized’ coherent-wave approxunatmn developed here seems to offer a useful
new approach to electronic structure calculations in disordered materials and also in such
materials as finely polycrystalline solids.
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