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Some Molecular Aspects of Ice Crystal Nucleation
By NEviLrLeE H. FLETCHER, Armidale, N.S.W. Australia®)

1. Introduction

-~ The nucleation and growth of ice crystals from supersaturated vapour or super-
. cooled liquid phases are topics of considerable basic interest, as well as being of quite
“major importance in cloud physics. The crystallization process has, it is true, been
.studied in detail in many other systems, but it is in the water vapour-ice system that
‘most attention has been paid to the detailed mechanism of nucleation.

Despite this concentrated study, however, many details of the nucleation process
“remain poorly understood. The general outlines of nucleation behaviour can, it is
. true, be very satisfactorily described by a sort of ‘macrpscopié’ theory; but when
‘microscopic details of molecular mechanism are investigated the single adjustable
o parameter of the macroscopic theory is found to cloak a good deal of uncertainty.
“" The present paper is concerned with a discussion of some molecular mechanisms in

. the nucleation process, particularly in the case of the water vapour-ice system.

2. Macroscopic Theory

What we have called the macroscopic theory of nucleation behaviour was devel-

+.-oped some thirty years ago by VoLMER [1]2) and WEBER and subsequently refined by
- Brcker and DSRING, and by ZELDovICH and FRENKEL [2]. This theory assumes that
‘> macroscopic concepts, such as that of surface free energy, can be validly applied to
“very small transient groupings of melecules. Once this is granted then the free energy
~ of formation of an embryo of the new phase having any arbitrary shape and size can
- be worked out, and the distribution of such embryos determined by thermodynamic,
i, “or better, by kinetic methods.
i To illustrate this approach, consider a regular »-sided prism of the new phase 2
" growing upon a plane substrate 3 in an environment 1. The free energy of formation
~ of this embryo, 4G, depends on the interfacial free energies ¢;; and upon the free
energy difference AG, per unit volume between phases 2 and 1. An explicit expression
‘can be written

AG=Enr?h AG, + E7 72 (015 — Oy3 + Og3) +2& w7 1 0y, 1)
kw’here
n A
& = ;tar; 2

) Department of Physics, The University of New England.
%) Numbers in brackets refer to References, page 495.
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and the dimensions 7 and % are as shown in Figure 1. The expression for AG is usually
simplified by introducing the quantity » defined by

013 — Oa3

1 (3
which specifies the degree of compatibility between the embryo and the substrate,

mwm =

46 4

Figure 1 |
The free energy of formation, 4G, of a small prismatic embryo upon a nucleating substrate. The height
of the free energy barrier to nucleation is AG*.

The form of the expression given for AG is ¢learly that of a ruled surface, as is
shown in Figure 1. In order that a free-growing crystal of the new phase may form, ;
the embryo must grow from zero size, represented at the origin, through the saddle 5
point where the energy is AG*. This energy barrier is what limits the nucleation pro-
cess, and the nucleation rate can be written [1, 2]

— AG*

J=Kexp L v (4)
where K is a kinetic constant which is determined in detail by the nature and con-
centration of the phases involved.

It is interesting to note that in this simple case, and also in cases where the sub-
strate consists of two or three intersecting plane surfaces, the embryo maintains a
constant habit during its growth and the path of minimum free energy thIoug_h the.
saddle point is the curve of intersection of the energy surface with a plane through th
origin and perpendicular to the (7, 4) plane. '

The more general case where nucleation occurs on a small foreign particle of arb
trary shape has recently been treated by the present author [3]. In this case the hab
of the embryo does not remain constant, so that the analysis is more complicate
The final result, however, has the simple form

]=Kexp[__"_(;;’:§£_m’_m], ®
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'where AGE¥ is the critical free energy for homogeneous nucleation, R is a characteristic
_ dimension of the particle involved and # is given by (3). The forms of the function f
for cases of interest, together with numerical calculations, have been given else-
where [3].

When this theory is applied to various nucleation problems it is assumed that oy,
and AG, have their ordinary macroscopic values so that, assuming R to be known,
the only adjustable parameter is m. It is found that in this form the theory gives a
remarkably accurate description of the nucleation behaviour of silver iodide aerosols
(4], and indeed apparently leaves very few results without adequate explanation. By
a different appropriate choice of m the behaviour of most other nucleating materials
can be similarly treated. Simple extensions also lead to quite satisfactory treatments
of surfaces containing steps, dislocations and similar crystal features. ‘

The success of this approach, however, tends to obscure the very considerable
simplifications which have been made, in particular by introducing the quantity m
 which has, perforce, been treated as a parameter which can be assigned within

" reasonable limits. For the remainder of this paper we shall be concerned with some of
the molecular interactions which have beén compressed into this single parameter.

3. The Compatibility Parameter m

The parameter m, defined by Equation (3), is essentially a measure of the nuclea-
tion efficiency of a particular type of surface. In the simple case of the nucleation of
liquid droplets from a vapour # is the cosine of the contact angle of the liquid on the
substrate. From various arguments we can see that

1< m<1. (6)

A particle with m = 1 is as efficient a nucleus as a particle of its size, shape and dis-
location content can be. Effectively it behaves as an irreducible embryo of the new
phase...On the other hand a surface for which m = —1 is completely inactive in
nucleation. :

Evaluation of m, from (3), involves knowledge of three interfacial free energies—
0y, that of the interface between the embryo and the substrate; oy,, that of the inter-
face between the new phase and its parent phase; and finally oy,, the free energy of
the interface between the nucleating surface (which may be covered with an ad-
sorbed layer) and the parent phase. We shall consider these in turn.

4. The Embryo-Substrate Interface

Several studies have been made of the free energy of the interface between em-
bryo and substrate. Most of these treatments neglect entropy effects and so give free
energy at 0° K or the energy component alone at a finite temperature. We shall come
back to consider the entropy component later.

When two semi-infinite crystals meet in a plane interface it is possible, in prin-
ciple, to compute the interfacial energy from a knowledge of atomic interaction poten-
tials. In practice this has not yet proved possible, and it has been found necessary to
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consider a very simplified form of interaction across the interface. In a plane paralle]
to the interface the potential can be written as a double Fourier series using the
reciprocal vectors of the surface lattice. This potential may be investigated semi-
quantitatively by retaining only the lowest Fourier components, and a further great
simplification can be introduced by taking a plane section normal to the surface, thus
yielding a one-dimensional interface. - -

The energy of such a one-dimensional interface has been considered by Frank
and VAN DER MERWE [5, 6]. They found that the energy of the interface dependé
quite critically upon the degree of misfit between the lattice parameters of the two
materials and has a sharp minimum when these parameters are equal. This behaviour
is due to the dislocation content of the interface, which increases smoothly with in-'
creasing misfit. Each dislocation introduces boundary energy and, in addition, elastic
strain energy is stored in the bulk crystal close to the interface.

In the case where one of the cristals is reduced in thickness to a monomolecular
layer, FRANK and VAN DER MERWE concluded that the equilibrium configuration
might be one in which the epitaxial layer was uniformly constrained to conform with
the substrate, the interface then containing no dislocations. They predicted this sort
of behaviour for epitaxial layers of one or two molecules thickness and for misfits of
less than about 10 per cent. SMOLLETT and BLACKMAN [7], however, argued that such
uniformly strained layers are unstable and concluded that equilibrium layers will
have, on the average, their natural lattice spacings.

The theory of FRANK and VAN DER MERWE in its simple form [5] which relates to
a rigid substrate, has been applied to nucleation problems with some success by
TURNBULL and VONNEGUT [8], though some of the numerical results are not consistent
with the theory in absolute magnitude [9].

In extensions of this basic theory, vaAN DER MERWE [6] has allowed for the fact
that both the substrate and the overgrowth will suffer elastic distortions. The elastic
energy is found to be stored in the two halves of the solid in inverse ratio to their
shear moduli, a conclusion which may partially explain the results of NEWKIRK and
TurnBULL [9] and which indicates in a general way that a good nucleating material
should have a low shear modulus. This may be part of the reason why some o‘rgaﬂic
materials, which should have a very small shear modulus on a molecular scale, are
sometimes such efficient nuclei.

A further extension to the theory [6] treats the case of misorientation of the crys-
tals about an axis normal to the interface. Again it was found that interfacial energy
has a sharp minimum when the crystals are in parallel orientation—a result to be
expected from numerous experimental observations of oriented overgrowths.

In some ways, however, the theory of FRANK and VAN DER MERWE is inadequf{te’
and these inadequacies become quite important in many practical ice nucleation
problems. The theory as presented is a solution of elastic strain equations, at the inter-
face and in the bulk of the material, on the basis of an elastic stress function of par”
ticular form. A re-examination of the problem by means of a variational metho
shows that slightly more general assumptions are required if a true minimum is to be
found for the interfacial energy. An investigation along these lines is now in progress
and it is hoped to report results for several important interface problems at a latef
date. Meanwhile, however, a preliminary discussion of the one-dimensional case MY
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be of interest because it reveals important subsidiary energy minima (for example at
ttice misfits of 2:1 and 3:2) which are important in nucleation problems.

Consider a one-dimensional substrate whose surface potential can be represented
a5 a Fourier series

la

2anx
V(x) = — 2;' V, cos———~, (7)
where a is the lattice spacing in the substrate. This series is not of the most general
form, but will be adequate for the present discussion. Suppose the atomic positions x
in the overlying layer are given by

x=mb+c, m=0,1,2 ..., (8)

where ¢ is a displacement constant, and the lattice parameter b of the overlay is
related to that of the substrate by -
Mb=Na, (9)

M and N being integers with no common factor. Then the average potential per atom
of the overlay, without allowing any elastic distortion, is

1 & mn N nc
E1=—7V[~m=12; I{,cosZn(T—]-—a—). (10)
The only terms remaining after the sum over m has been carried out are those for
which #N/M is an integer, i.e.

n=sM, s=1,2,.... (11)

Each such term contributes an energy —V, cos (27 # ¢/a) and the displacement ¢ can
be chosen to minimize this total energy. The minimum so obtained will be at least as
low as the result for a particular choice of ¢ such as a/M or a/2 M. These two choices
give respectively

Ei= Vi 12
S
and
E] ==/ (-1)Viu (13)
s

and we may choose the lower of these two as a good approximation to E;.
To a first approximation the substrate atoms may be treated on the assumption
‘that the overlay potential is similar to that of the substrate except for a scale factor.

: _ The wnalysis is then similar and, in virtue of (9), the relative displacement ¢ is the

same as for the overlay, giving

Ey=min{- 3 Vo, =2 (=1 Vin}, (14)

the same series being taken as for E,. The total interfacial misfit energy is thus
essentially

ME,+ NE,
M+N

E~ (15)
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Since the Fourier components ¥, may be expected to fall quite sharply with in-
creasing #, this analysis shows that one may expect subsidiary energy minima at
lattice misfits which are related by small integers as in (9). When the effects of elastic
strain are included, as in the analysis of vAN DER MERWE [6], all the energy minim,
may be expected to have finite width. . -

This overall behaviour is shown in a semi-quantitative way in Figure 2, which -
has been drawn for the case of a parabolic interatomic potential. The Fourier compo-
nents here have the form

Vy= (1"t 2V . (16)
Some broadening of the minima has been indicated qualitatively, but this has not
been calculated.
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Figure 2

The energy of a one-dimensional interface between two crystals, having lattice parameters & and b respec
tively, when the lattice potential is assumed to be parabolic. Only the depths of the minima have been
calculated; their widths are approximated from elastic considerations.

It can be seen that, in addition to the primary minimum for 1:1 fit, there are
important subsidiary minima when the misfit ratio is simple, in agreemert with the
expectations aroused by nucleation experiments. It is to be expected that more de-
tailed and rigorous analysis will confirm these findings.

Tt is also clear that it is not only the fundamental Fourier coefficient which is im-
portant, but also higher order coefficients, and these are specially important when the
misfit is not 1:1. Putting this in physical terms, it is not merely the lattice geometry
which affects the nucleation behaviour of a substrate but also the detailed nature of
its surface potential and hence of its molecular binding.

5. Entropy Considerations

As was remarked earlier, a study like that above gives a value for interfacial

energy rather than free energy. Since it is this latter quantity which is involved in the
nucleation equations, the entropy term must be evaluated and explicitly indﬂdefl'
For many solids the entropy term may not be of particular importance, but this

is 1ot so in the case of ice nucleation. Each water molecule is a dipole which, n 2% 1
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structure, has a certain number of possible orientations all of which contribute to the
Configurational entropy. If the surface of the substrate is such as to decrease this
configurational freedom, then the free energy will be correspondingly raised. Again in
* the case of ice this entropy defect may be carried into the bulk of the material rather
than be localized at the interface, thus leading to correspondingly increased
effects.

: This problem has been discussed by the present author [10] with the conclusion
that substrate faces exposing ions of one sign only should be poor nuclei while faces
- exposing equal numbers of positive and negative ions should show no such inhibition.
In the case of pure silver iodide this implies that entropy effects should inhibit nuclea-
tion on basal faces, while prism faces should be unaffected.

EpwARDs and Evans [11] have pointed out that the influence of adsorbed Agt-
or [--ions should appreciably alter this behaviour, and have found a maximum in the
activity of silver iodide particles prepared from suspensions near the isoelectric point,
in substantial agreement with the theory.

If a criterion of minimum entropy deficit were to be used in a search for new ice
nuclei, then one might favour materials with exposed OH-groups of suitable geo-
metry. This may again partly explain the activity of certain organic materials. Alter-
nately one might seek for more or less ionic materials whose faces expose equal num-
bers of positive and negative ions, again with suitable geometry.

6. Surface of the Embryo

Relatively little attention has been paid in the literature to the free energy of the
surface which the embryo presents to its parent phase. In the case of a liquid embryo
it has been customary to use the macroscopic surface tension, with perhaps a small
and rather uncertain correction for curvature in very small embryos. For solid-vapour
interfaces experimental values for surface free energies are scarce and theoretical esti-
mates rather uncertain, though usually sufficient to give satisfactory agreement with
nucleation experiments?®). The numerical magnitudes are even more uncertain for
solid-liquid interfaces.

This analysis however neglects an important possibility, namely that the surface
zone of the embryo may be of appreciable thickness. A structure of this type has long
been under discussion in the case of ice, and recent semi-quantitative arguments [12]
suggest that the surface zone of ice may have a disordered, quasi-liquid structure and
a thickness of perhaps ten molecular layers at temperatures down to —10° C or so.

Direct experimental evidence for such a surface structure is difficult to obtain;
however, measurements of surface diffusion and surface conductivity on ice support
the model in a general way. Recent nuclear magnetic resonance experiments by
BarNEs and SANGER [13] on the solidification of water adsorbed on silver iodide and
similar materials also suggest a gradual phase change which is consistent with the

existence of a surface transition layer.
.

%) It is sometimes said that nucleation experiments depend critically on this surface free energy.
While this is true of the nucleation rate, this is not the quantity which is determined experimentally.
Experiments almost invariably measure the threshold supersaturation or supercooling at which the
nucleation rate reaches a particular value. This experimental quantity varies only as the three-halves
Power of the surface free energy.
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If such a surface zone does exist in ice then it may have two important effects, In
the first place it admits the possibility that the surface free energy of ice may vary
quite rapidly with temperature in the vicinity of the melting point. Secondly it is
clear that the transition zone may make up a considerablefraction of the total volume
of the embryo and may be affected to some extent by the substrate. It is, perhaps,
too early to consider these possibilities in detail, but they should not be lost sight of.

7. Surface of the Substrate

_In any nucleation situation the surface of the substrate is clearly in a very compli- -
cated state, since it is on this surface that the whole population of embryos envisaged
in nucleation theory develops. Ordinary adsorption theory is not adequate to treat
this case since it is essentially an equilibrium theory, and in a supersaturated state
true equilibrium cannot be attained and the amount of adsorbate becomes infinite.
What must be developed instead is a time-dependent adsorption theory which is
closely integrated with nucleation theory itself. )

Whilst no such theory has yet been put forward, it is possible to see the lines upon.
which it might develop. If we consider a material such as silver iodide then it is known
that the equilibrium adsorption of water vapour under unsaturated conditions is
much less than a monolayer [14]. It is thus reasonable to assume, from the usual
kinetic arguments, that the equilibrium amount of water adsorbed as single molecules
is approximately proportional to the saturation ratio s = p/p,, and that this equili-
brium amount of adsorption will be essentially achieved after a very small time lag.

As well as this, however, the adsorbed molecules may exist in the form of clusters
which are the sub-critical embryos of nucleation theory. The additional amount of
material present in this form must be included in a count of all the adsorbate, and the
time lag for the formation of the clusters must be allowed for when conditions are not
those of equilibrium.

On a plane substrate with surface parameter m, which we use for simplicity though
recognizing that it must depend on the adsorption conditions, the free energy excess
AG(n) of an embryo of # molecules is easily calculated. Under unsaturated conditions
an equilibrium distribution of such embryos will be eventually attained, and the total
adsorption at a saturation ratio s is approximately

NxAs)'n Xp—_—zl—?—.@, (17)

where 4 is a constant determined by the adsorption energy of single molecules on the
substrate. This isotherm, which is the limiting form shown in Figure 3, resemblesfv an
ordinary Type III adsorption isotherm, though with finite adsorption at saturation-

When the environment is supersaturated the adsorption is time-dependent and
depends in additiori upon the adsorption history of the sample. It is possible to evalu-
ate roughly the maximum adsorption possible before nucleation takes place by trun-
cating the series in (17) above at the value of » corresponding to a critical embryo:
for which AG(n) is a maximum. The curve so obtained is shown qualitatively 25 f‘i
broken line in Figure 3 for the case of a substrate with » < 1. Shown also on b3
figure are curves indicating qualitatively the amount of adsorption to be expe
times before nucleation takes place.

ctedat - :
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A proper treatment of this adsorption process, possibly along the lines suggested
above, is clearly necessary before any good understanding of heterogeneous nucleation

“is possible.
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Figure 3
Time-dependent adsorption isotherms based upon the model discussed in the text.

8. Conclusions

It will be clear from the preceding discussion that a large number of phenomena
on a molecular scale still remain to be investigated in detail in search of an under-
_standing of nucleation processes.

: In the first place energy and entropy considerations at interfaces and free surfaces
~ need considerable study. Models with simply ‘assigned interaction functions ¢an pro-
vide useful information here, but ultimately calculations should involve the direc-
tional bondings found in ice and other molecular structures.

 In addition the adsorption process under conditions of metastable equilibrium
~ deserves close attention. Understanding of the mechanism of this process is closely
linked with that of the whole nucleation problem.
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Zusammenfassung

Der Vorgang der Keimbildung von Kristallen auf einer ebenen Unterlage wird auf
molekularer Basis betrachtet. Hierzu wird iiber mehrere Ergebnisse eines neuartigen
Anndherungsverfahrens berichtet. Man findet, dass die Energie, die einer eindimeén-
sionalen Grenzfliche zwischen zwei Kristallen zuzuordnen ist, Minima aufweist, wenn
die Gitterkonstanten in einfachen Zahlenverhiltnissen zueinander stehen. Die relativen
Tiefen dieser Minima werden niherungsweise unter Annahme eines parabolischen Gitter-
potentials berechnet. Ferner wird die metastabile Adsorption an einer keimbildenden
Unterlage untersucht und hierfiir ein neuartiges Modell fiir die Adsorptionsisotherme
vorgeschlagen.
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Ice Nucleation by Hydrophobic Substrates

By ArserT C. ZETTLEMOYER?Y), NoUBAR TCHEUREKDJIIANZ), Bethlehem, Pa., and
Cuarres L. HosLER®), University Park, Pennsylvania, U.S.A.

Introduction

At the University of Arizona meeting on cloud seeding [1]%) we revealed that
several silver iodide preparations exhibited specific nitrogen surface areas (BET}
far in excess of the surface areas determined by water vapor adsorption. The
nitrogen is adsorbed over the entire surface whereas the water is not. Therefore, silver
iodide surface is largely hydrophobic. The curious long-standing, but unjoined, con-
troversy between the cloud physicists on the one hand and the colloid chemists on the
other was thereby settled [2]. For the former regarded silver iodide as being h}’dw'
philic and epitaxial with ice in accord with the fairly close fit of their crystal para-
meters, whereas the latter regarded it as being hydrophobic because it flocculates af}d e
settles out of colloidal dispersion upon reduction of charged double layers. The his- o

torical conclusion reached by the colloid chemist was correct, but the argument em- =
ployed was specious since the floccules simply settle out due to gravitational forcés

Harr and TompxiINs [3] recently confirmed the hydrophobic nature of silver iodide
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