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We show how students can be led to an understanding of the connection between special relativity
and general relativity by considering the time dilation effect of clocks placed on the surface of the
Earth. This paper is written as a Socratic dialog between a lecturer and a student. © 2006 American
Association of Physics Teachers.
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I. SETTING THE SCENE

Sam is in the office and has just finished reading Plato’s
Meno1 in which Socrates uses a self-discovery technique to
teach a boy Pythagoras’ theorem. Sam is inspired by this
dialog and is pondering its applicability to lecturing under-
graduate physics when a tap on the door breaks that chain of
thought. Kim enters the room looking bleary eyed and pale.
“Been out celebrating the last lecture of the year” Sam sur-
mizes, little knowing that other things have kept Kim awake.

II. THE DIALOG

Kim: Your lectures on special relativity fascinated me, and
when I got home I wondered if I could construct a simple
experiment to prove or disprove time dilation, the aspect of
special relativity that interests me the most. While lying in
bed before dozing off, I realized that a clock placed at the
equator should run slower than a clock placed at the pole. So
I did a little calculation and found that special relativity pre-
dicts that a clock on the equator runs slower by about 100 ns
per day with respect to a clock at the pole. Although this
effect is not large, it is certainly measurable with modern
atomic clocks. So I went onto the internet to see if I could
find any reference to such an experiment and to my surprise
I couldn’t.

I was starting to get so frustrated that I couldn’t sleep. I
glanced at the clock �3 am�. I thought to myself “How accu-
rate is my clock?” I should check it against internet time.
Then it occurred to me that the world timing standard orga-
nizations must mention a latitude effect on local clock accu-
racies. So I went onto the internet again and checked The
Bureau International des Poids et Mesures2 because the Bu-
reau calculates the international atomic time from atomic
clocks located in more than 30 countries around the world. I
was sure that I must find something about the latitude effect
on their web site. After spending hours trawling their site and
then other sites on the web, I came up with nothing. There
was a discussion of the relativistic effect of placing clocks at
high altitudes, but nothing about latitude. In my despair I
gave up and collapsed into a fitful sleep.

I came to see you today in the hope that you could cure
my insomnia.

Sam: You are in good company in thinking that clocks at
the equator and the pole should tick at different rates. Ein-
stein himself predicted as much in his famous 1905 paper on
the special theory of relativity.3 Luckily for physics the effect
was not measurable with the instruments of the day because
Einstein’s prediction would have failed to match experiment.
Let us return to your findings:
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�1� According to the special theory of relativity a clock lo-
cated at the equator should run slower than one at the
pole and

�2� Empirically, all clocks located at sea-level on the Earth’s
surface tick at the same rate, regardless of latitude.

To help you understand how both apparently contradictory
statements can be true I will ask you a question. If the Earth
were a rotating perfect fluid and we could ignore the gravi-
tational effects of the Sun and the Moon, what shape would
the Earth be?

Kim: Well, I don’t see how this question is relevant, but I
would answer your question by drawing a free-body dia-
gram. Can I use your blackboard?

Now let me see … consider a test mass placed on the
surface of the Earth �see Fig. 1�. We know that the forces
acting on the test mass are the outward force due to the
difference in pressure and the inward force due to gravity. If
the test mass is in hydrostatic equilibrium, then the pressure
gradient force must be perpendicular to the surface and the
sum of the gravitational and pressure gradient forces is the
centripetal force, which is perpendicular to the axis of
rotation.4 Hmmm … you would have a complicated integral
equation to solve because the direction of the gravitational
force vector would depend on the distribution of mass. Fur-
thermore, the pressure gradient would be perpendicular to
the surface we are trying to calculate. It seems to be a com-
plicated problem and, to be honest, I am not sure that I could
solve it.

Sam: It is a difficult problem whose solutions involve hy-
perbolic and elliptic functions. Chandrasekhar has devoted a
whole book to the subject.5 Before we travel that arduous
mathematical road, let us see if we can use some physics to
help us. Taking our model of Earth as a rotating perfect fluid,
is the Earth an equipotential surface?

Kim: Thinks … Yes.
Sam: Why?
Kim: Because if it wasn’t, the sea water would feel a force

F� =−m�� and would move until ��=0 everywhere on the
surface.

Sam: So if I told you what the Earth’s gravitational field
is, could you tell me the shape of the Earth?

Kim: Yes, I think I could.
Sam: How?
Kim: If you told me that the Earth’s gravitational potential

is �g�r ,��, where r is the distance from the center and � is
the colatitude,6 then I could calculate the effective potential
felt by an observer co-rotating with the Earth by including

the centrifugal force
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�eff = �g�r,�� − 1
2�2r2sin2 � , �1�

where �� �0,��, �=0 at the north pole, � /2 at the equator,
and � at the south pole; � is the Earth’s rotation rate; and r
is the distance from the center to the Earth’s surface. The
second term on the right-hand side of Eq. �1� is the “centrifu-
gal potential.” Now we have already argued that a co-
rotating observer on the surface of the Earth feels no change
in the effective potential regardless of his/her latitude, that is,
�eff is constant. Furthermore, you have told me that we
know the Earth’s gravitational potential �g�r ,��, so all I
need to do is rearrange Eq. �1� and, voilà, we have an ex-
pression for the shape of the Earth’s surface. Mind you, be-
cause �g�r ,�� may be a complicated function, I am not sure
that I can find an analytic expression for r anyway.

All this is very interesting, but I don’t see how it answers
my question about why clocks tick at the same rate on the
Earth’s surface.

Sam: Patience, we are coming to that. First let us investi-
gate the discovery you have made, namely the shape of the
Earth. Let me see, I know I have it in here somewhere …

Sam flicks through some notes in the filing cabinet.
Ah here it is. Despite the Earth’s complicated shape with

mountains and valleys, its gravitational field can be modeled
to a fractional accuracy of 10−14 by7

�g�r,�� =
− GMe

r
−

J2GMea
2�1 − 3 cos2 ��

2r3 , �2�

where GMe=3.986 004 42�1014 m3 s−2 is the product of the
gravitational constant and the mass of the Earth,8 J2
=1.082 636�10−3 is a measure of the Earth’s equatorial
bulge and is related to the Legendre polynomials,9 and a
=637 813 7 m is the Earth’s equatorial radius.10

To evaluate your equation for the Earth’s surface �which
incidentally is called the Geoid�, you will need an accurate
value of the Earth’s rotation rate.

Sam shuffles through some files … Yes here it is11

� = 7.292 116 � 10−5 rad/s. �3�

Now your Geoid equation is going to be a bit tricky to

Fig. 1. Free body diagram for a mass placed
solve analytically so instead of doing that let us see if we are
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on the right track. The easiest thing for us to do is to check
that your equation for the Earth’s effective potential �eff is
the same at the equator and the pole.

�eff at the pole: The Earth’s mean polar radius is r̄
=6356.76±0.07 km �Ref. 11� and

�eff�r = r̄,� = 0� =
− GMe

r̄
+

J2GMea
2

r̄3

= − 6.2637 � 107 m2 s−2. �4�

�eff at the equator: The Earth’s mean equatorial radius is ā
=6378.1±0.2 km �Ref. 11� and

�eff�r = ā,� = �/2� =
− GMe

ā
−

J2GMea
2

2ā3 −
1

2
�2ā2

= − 6.2637 � 107 m2 s−2. �5�

Look the two values for �eff are the same! What have you
shown?

Kim: We have shown that the Earth is indeed an equipo-
tential surface with respect to an observer sitting on the sur-
face. But Sam, this calculation has nothing to do with the
question I originally asked you!

Sam: Doesn’t it? What did you ask me again?
Kim: I asked you why all clocks tick at the same rate on

the surface of the Earth when special relativity predicts that
they should run slower at the equator than at the pole.

Sam: Kim do you remember how we derived Einstein’s
famous formula E=mc2?

Kim: Yes and to be honest I was a little disappointed with
it. Once we learned that a constant speed of light lead to the
Lorentz transformations, the rest was just algebra.

Sam: Remind me of the algebra.
Kim: We got to the point where we realized that the proper

time interval, d� must be defined as

c2d�2 = c2dt2 − dx�2, �6�

with dt and dx� the coordinate time and space interval, respec-
2 2 2

he surface of the Earth as seen from space.
on t
tively. Then we multiplied Eq. �6� by m c /d� to obtain
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m2c4 = m2c4� dt

d�
�2

− m2u�2c2. �7�

If we equate u� with dx� /d�, we obtain m2c4�2− p�2c2 because
�=dt /d� and p� =mu� , and hence,

m2c4 = E2 − p�2c2, �8�

because relativistic kinetic energy is mc2�. So if p� =0, then
E=mc2. Like I said, just algebra.

Sam: Hmm, yes indeed. Suppose you are floating in a
room with no windows or doors. All of a sudden, you feel a
force that throws you against the wall. If there were two
possible forces, gravitational and centrifugal, are you able to
determine which force you are feeling?

Kim: I don’t see how.
Sam: And what would you �sitting in this closed room� say

your time dilation was with respect to an observer who was
not feeling the centrifugal or gravitation force?

Kim: I think I see what you are getting at. I can’t say
whether the force is gravitational or centrifugal, so I must
treat their effects as the same. If I knew the force was cen-
trifugal, I would say that my time dilation with respect to a
stationary observer depends only on my velocity v, that is,
�=1/�1−v2 /c2. Because I don’t know where the energy to
thrust me against the wall has come from, to be consistent I
must say that the time dilation depends only on the effective
potential, which is the sum of the gravitational and centrifu-
gal potentials.

Sam: Excellent! The idea that you can’t know if the force
is a uniform gravitational force or a combination of uniform
forces, is called the equivalence principle.12 What does it tell
you about clocks on the surface of the Earth?

Kim: Yes, yes, of course. According to somebody standing
anywhere on the surface of the Earth, all their energy is
effective potential energy �eff. The rate at which their clock
ticks depends only on this effective potential. We already
showed that the effective potential over the surface of the
Earth is constant. So all clocks on the surface of the Earth
tick at the same rate. Eureka, I can sleep again!

Sam: Yes, you can sleep well indeed because you have just
discovered one of the fundamental arguments that led to the
development of the general theory of relativity. Before you
go, let me clarify one point. To determine the time dilation,
you used the effective potential which came from Newtonian
arguments about gravitational and centrifugal forces. Ac-
cording to general relativity the Newtonian effective poten-
tial is an approximation to the relativistic effective potential.
This difference does not change our conclusion in any way,
the effective potential is still constant, it just means that in
general relativity we have a slightly different version of �eff
�see the Appendix�. Having said that, you should note that
for the Earth, the Newtonian and relativistic effective poten-
tials are almost identical. To learn precisely what the differ-
ence is, you will have to take my general relativity course,
unless you continue to derive general relativity by yourself!

After exchanging pleasantries, Kim leaves for the long
cycle home. While cycling home Kim reflects on the fact that
the thought experiment involving a person in a windowless
room who didn’t know if the force she/he felt was gravita-
tional or centrifugal was very similar to the arguments about
absolute and relative motion that they had learned in their

special relativity course.
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Sam contemplates this conversation with Kim and won-
ders if it should be entered into next year’s general relativity
lecture notes.
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APPENDIX: GENERAL RELATIVISTIC
CORRECTIONS TO THE EFFECTIVE POTENTIAL

According to the general theory of relativity, the proper
time interval �d�� for a clock in a weak gravitational field
�such as the Earth’s� is given by12

− c2d�2 � − �1 + 2
�g

c2 �c2dt2 + �1 − 2
�g

c2 �dr2 + r2d�2

+ r2sin2 �d� , �A1�

where �g is given by Eq. �2� and �g /c2	1. For a clock
sitting on the surface of the Earth

dr = d� = 0 and d� = �dt , �A2�

so the proper time interval is

�A3�

where �eff is the Newtonian gravitational potential �see Eq.
�1��. The time dilation effect is obtained by rearranging Eq.
�A3�:

dt

d�
=

1

�1 + 2
�eff

c2

. �A4�

We have shown that the weak equivalence principle effec-
tively states that time dilation can be calculated in terms of
the effective potential only, that is

dt

d�
= 1 −

�eff
GR

c2 , �A5�

where �eff
GR is the relativistic effective potential. The relativ-

istic effective potential can be determined in terms of the
Newtonian potential by expanding Eq. �A4� and equating it
with Eq. �A5�:

�eff
GR

c2 =
�eff

c2 −
3

2

�eff
2

c4 + O��eff
3

c6 �
�

�eff

c2 −
3

2

�eff
2

c4 if
�eff

c2 	 1. �A6�

If we compare Eq. �A6� with Eq. �1�, using the values for
�eff as calculated in Eqs. �4� and �5�, we see that the relativ-
istic effective potential differs from the Newtonian effective

−11
potential to a fractional accuracy of 10 .
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